<解説>

CHEERS (Consolidated Health Economic Evaluation Reporting Standards) 2022 詳細と解説
—ISPOR (国際医薬経済・アウトカム研究学会) CHEERS II Good Practices タスクフォース報告書—

白岩健1). 能登真一2). 小林慎3). 福田敬1)

- 1) 国立保健医療科学院保健医療経済評価研究センター
- 2) 新潟医療福祉大学リハビリテーション学部
- 3) クレコンメディアカルアセスメント株式会社

Consolidated Health Economic Evaluation Reporting Standards (CHEERS) 2022 explanation and elaboration: A Report of the ISPOR CHEERS II Good Practices Task Force

SHIROIWA Takeru 1), NOTO Shinichi 2), KOBAYASHI Makoto 3), FUKUDA Takashi 1)

抄録

医療経済評価は、費用と結果の点から、代替案との比較分析を行うものである。2013年に公表された CHEERS (The Consolidated Health Economic Evaluation Reporting Standards) は、医療経済評価の特定や 解釈が可能で、意思決定に有用であることを保証するために作成された. CHEERSはガイダンスとして、 どの健康介入を比較したか、どのような状況で、どのように評価を行い、どのような結果が得られたか、 あるいは読者や査読者たちがその研究を解釈し、利用するのに有用かもしれない詳細な事項について、 著者が正確に報告するために役立つことを目的としていた。新しいCHEERS 2022は、以前のCHEERS報 告ガイダンスを置き換えるものである.これは、あらゆる種類の医療経済評価、この分野における新し い方法や発展、患者や一般市民などステークホルダーの役割増加に容易に対応できるガイダンスの必要 性を反映したものである。また、個人の健康か集団の健康か、単純であるか複雑であるかを問わず、コ ンテクスト(医療、公衆衛生、教育、社会的ケアなど)によることなく、あらゆる形式の介入に幅広く 適応可能である. この報告書には推奨と解説のついた28項目からなるCHEERS2022チェックリストと 各項目の具体例が示されている. CHEERS 2022 は主に, 査読誌に経済評価を報告する研究者とそれら を評価する査読者や編集者を対象としている。しかし、研究を計画する際には、報告要件を熟知してい ることが分析者にとって有用であると考えられる. また, 意思決定において透明性がますます重視され るようになっており、報告に関するガイダンスを求める医療技術評価機関にとっても有用な可能性があ る.

キーワード:費用便益分析,経済評価,ガイドライン,方法論,ミクロ経済分析,報告,基準

Abstract

Health economic evaluations are comparative analyses of alternative courses of action in terms of their costs and consequences. The Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement,

連絡先:白岩健

〒 351-0197 埼玉県和光市南2-3-6 2-3-6 Minami, Wako, Saitama 351-0197, Japan. Tel: 048-458-6285/ Fax: 048-458-6715 E-mail: shiroiwa.t.aa@niph.go.jp [令和5年8月31日受理]

¹⁾ Center for Outcomes Research and Economic Evaluation for Health (C2H), National Institute of Public Health

²⁾ Faculty of Rehabilitation, Niigata University of Health and Welfare

³⁾ CRECON Medical Assessment Inc.

published in 2013, was created to ensure health economic evaluations are identifiable, interpretable, and useful for decision making. It was intended as guidance to help authors report accurately which health interventions were being compared and in what context, how the evaluation was undertaken, what the findings were, and other details that may aid readers and reviewers in interpretation and use of the study. The new CHEERS 2022 statement replaces the previous CHEERS reporting guidance. It reflects the need for guidance that can be more easily applied to all types of health economic evaluation, new methods and developments in the field, and the increased role of stakeholder involvement including patients and the public. It is also broadly applicable to any form of intervention intended to improve the health of individuals or the population, whether simple or complex, and without regard to context (such as healthcare, public health, education, and social care). This Explanation and Elaboration Report presents the new CHEERS 2022 28-item checklist with recommendations and explanation and examples for each item. The CHEERS 2022 statement is primarily intended for researchers reporting economic evaluations for peer-reviewed journals and the peer reviewers and editors assessing them for publication. Nevertheless, we anticipate familiarity with reporting requirements will be useful for analysts when planning studies. It may also be useful for health technology assessment bodies seeking guidance on reporting, given that there is an increasing emphasis on transparency in decision making.

keywords: cost-benefit analysis, economic evaluation, guidelines, methods, microeconomic analysis, reporting, standards

(accepted for publication, August 31, 2023)

<訳者解説>

本文書はCHEERS2022 (Value Health. 2022;25(1):10-31.) の日本語訳である. CHEERS2022 は, 2013 年に公表さ れたCHEERSの改訂版であり、前版は費用効果分析等 を含む医療経済評価に関する報告ガイダンスとして活 用されてきた. 有名なCONSORT (無作為化比較試験), STROBE (観察研究), PRISMA (システマティックレ ビュー) などとならびEQUATORネットワークにおいて も主要な研究領域における報告ガイドラインとして位置 づけられている. CONSORTの初版が96年であることを 考えると、CHEERSの登場 (2013年) はかなり遅れたこ ともあり、まだなじみの薄い向きもあるが、今やValue in HealthあるいはPharmacoeconomicsといった医療経済評価 の主要な学術誌においてもCHEERS2022に従った報告が 求められている. 海外主要雑誌への投稿を目指す我が国 の研究者や実務家にとってもその内容を把握しておくこ とは非常に重要だと思われる.

このCHEERS2022 は多くの報告ガイダンスと同様に、表形式のチェックリストと、それに関する「Explanation and Elaboration(解説と詳細)」からなっている。一方で、本分野を専門としていない研究者や実務家にとっては、「解説と詳細」まで含めたCHEERSを英語で理解していくことは少々敷居が高いようにも感じられる。残念ながら、我が国においては、諸外国と比べて医療経済評価における専門家の層が、アカデミア内外を問わずに非常における専門家の層が、アカデミア内外を問わずに非常における専門家の層が、アカデミア内外を問わずに非常における専門家の層が、アカデミア内外を問わずに非常における専門家の層が、アカデミア内外を問わずに非常における専門家の層が、アカデミア内外を問わずに非常における専門ないだろう。そのような状況は今すぐには改善しないだろう。そのような中で、医療経済評価研究を促進していくためには、様々な専門分野から本領域へ「越境」していただくことが不可欠である。本翻訳が、そのためのガイドの一

つとなることを願っている.

なお、特に「解説と詳細」部分は、基礎的な教科書等でひととおり医療経済評価の理解を身につけた研究者が、いざ実際の研究を開始するにあたって、査読誌への投稿等に向けてどのような情報が必要であるか、あるいは査読される際にどのような点に着目されるのかを知るためにも有用である。全ての研究においてあてはまることであろうが、いざ論文を書く際に報告すべき情報が足りないことに気づいても、後の祭りである。どうにもしようがない、そういった点で、CHEERS2022 は報告段階だけでなく、研究のデザイン段階においても戦略的に参照しておくべきものと言えるかもしれない。

ただし、本文中でも繰り返し表明されているように、CHEERSを論文の「質」を評価するためのツールとして活用することは推奨されていない。自分の書いた論文をCHEERSに当てはめてみても、その論文の質を保証するものではないし、ましてやアクセプトが約束されているわけではないことに注意が必要である。むしろ、スタートラインに立つための必要条件と解釈する方が適切であり、問題はここからどのように闘うかである。

CHEERS2022 の主な変更点は、本文中の囲み1にまとめられているが、「医療経済解析計画書(HEAP)」「分配費用効果分析」「患者・市民参画」「分析モデルのオープン化」など我が国における医療経済評価研究においてはほとんど実装されていないものが多い。本文中でも触れられているが、それは諸外国においてもおそらく同様の状況であり、「期待値込み」でこれらの項目を含めていることが記されている。そういった学術的な状況を考慮すれば(その状況も刻々と変わるかもしれないが)、これらの項目は多くの場合、当面のところ「報告されていない」という取り扱いになるのもやむを得ないものであるよう

に思われる.

また、筆者らも認めるとおり、まじめにCHEERSに従えば、膨大な報告スペースが必要になるため、本文をはみ出すものについては、オンラインAppendixやSupplementを用いて報告することが推奨されている。しかし、長大な報告書ならともかく、学術誌の記事において実践上どのレベルまで詳細な報告を行うべきなのか、あるいは編集者や査読者等からどの程度の報告が求められると想定するかについては頭を悩ませる部分である。それはもちろん臨床系の雑誌と、医療経済評価の専門誌でも異なるし、その雑誌のレベルでも変わってくるだろう。また、時代とともに求められる水準も移ろいゆく。こういったものはもちろん明文化されているわけではないから、ターゲット雑誌に掲載された類似研究を横目でにらみながら、「程度問題」については試行錯誤せざるを得ない。

翻訳については、可能な限り平易な日本語となるようにつとめたつもりではある。ただし、なるべく原文を尊重するようには努力したため、いわゆる翻訳調になっているところも多く、それは率直に訳者らの能力不足に由来する。「翻訳の不可能性」といった大それた話を持ち出すまでもなく、訳された日本語の文章に翻訳者の解釈が含まれていることは間違いない。我々の「解釈」が読者の理解を促進するために有用であればよいが、そうでないと感じた場合は必ず原文を参照するようにしてほしい。そして、誤訳や誤読、教養不足などは、SNS等で晒すのではなく、優しくご連絡いただければ幸いである。

なお、CHERRSを作成したのは国際医薬経済・アウトカム研究学会(International Society for Pharmacoeconomics and Outcomes, ISPOR)のタスクフォースである。ISPORは、医療経済評価などを取り扱う、本領域では最大規模の国際学会であり、翻訳者らも会員として所属している。アカデミアのみならず、産業界からの参加者も多い、海外学会の敷居が高い場合は、日本部会と呼ばれるISPORの国内組織(https://ispor-jp.org/)もあるので、これを機に関心を持っていただき、ぜひのぞきに来ていただければ幸いである。本翻訳もISPOR本部の承諾を得て実施した。

(注)"Comparator"は通例「比較対照技術」などと訳される。しかし、本文中においては、相互に比較されるもの、すなわち評価対象技術と比較対照技術をあわせた評価の俎上にのっている全ての技術を指すと解釈する方が適切である場面が多い。例えば、チェックリストの項目1の原文は"Identify the study as an economic evaluation and specify the interventions being compared."であるが、この"interventions being compared."であるが、この"interventions being compared."であるが、この"interventions being compared."であるが、この"interventions being compared."であるが、このではなく、評価対象となる介入も含めて読むべきであろう。論文のタイトルにおいて、(評価対象技術名を入れずに)比較対照技術名のみ含めるというのはどう考えても珍妙である。また、項目6のタイトルはそのもの"Comparators"であるが、比較対照技術のみについてその特性を詳細に記述するというのは、違和感しかない、このような事情から文脈上明らかに「比較対照技術」のみを

指すと解釈することに課題がある場合は、「評価対象技術/比較対照技術」などと誤解のないように訳した.

<訳者謝辞>

本翻訳の実施にあたってご協力いただいたFederico Augustovski教授 (Institute for Clinical Effectiveness and Health Policy) に感謝する.

I. 背景

医療介入の経済評価とは、費用と結果の点から、代替案との比較分析を行うものである。経済評価は、健康と資源利用に影響を与える選択について、政策立案者、支払者、医療専門家、患者、一般市民に対し、有用な情報を提供することができる。研究結果を精査できるよう、十分な情報を伝えなければならないので、経済評価にとって報告は特に課題である。出版される経済評価が増加し[1-3]、報告に関するガイダンスが利用可能[4]であるにもかかわらず、報告における標準化や透明性は十分ではない[5,6]。著者、学術誌編集者、査読者が経済評価を特定し、解釈する上で有用な報告ガイダンスの必要性が依然として残っている。

以前のCHEERS (The Consolidated Health Economic Evaluation Reporting Standards) [4]の目標は、出版される医療 経済評価の報告に必要な最小限の情報について、推奨す ることであった. CHEERSは、24項目チェックリスト とExplanation and Elaboration[解説と詳細]タスクフォース 報告書で構成されていた[4]. CHEERSの目的は、どの 健康介入を比較するか、どのようなコンテクストで、ど のように評価を行ったか、結果は何か、研究の解釈や 利用において読者や査読者に有用なその他の詳細な事 項、これらについて、著者が正確な情報を提供するのを 支援することであった. そうすることで, 関心のある研 究者が研究結果を再現することにも役立つ. 経済評価の 文献調査をする研究者を支援するために、 チェックリス ト項目(例:タイトル、要旨)に含まれたものもある. CHEERSは、過去の医療経済評価の報告ガイドライン[7-18]を1つの現行の有用な報告ガイダンスに統合したもの である.

CHEERSの概要は、医療経済評価を頻繁に出版している10誌に共同発表された[19-28]。それ以降、他の学術誌や健康研究組織、例えば英国国立健康研究所(UK National Institute for Health Research)[29]や国際医学出版専門業協会(International Society for Medical Publication Professionals)などの承認を受けている[30]。CHEERSは、EQUATOR(Enhancing the Quality and Transparency of Health Research)ネットワーク[31]により、CONSORT(Consolidated Standards of Reporting Trials)[32]、STROBE(Strengthening the Reporting of Observational Studies)[33]、PRISMA(Preferred Reporting Items for Systematic Reviews

and Meta-Analyses)[34]とともに、ヘルスリサーチの主要な研究タイプにおける報告ガイダンスとして認識されている.

以前のCHEERSが公表されて以降、進展がいくつかあり、それがアップデートの動機となっている。これらには、費用便益分析(cost benefit analyses, CBA)の報告を取り扱わなかったことに対する批判など、すでに認識していたCHEERSの限界に関するフィードバックなどがあった[35]。CHEERSを、報告の質ではなく方法の質を評価するツールとして、不適切に使用されていることも見受けられている[5]。そのためには他のツールが存在する[36]。また、システマティックレビューにおいて、研究を定量的に採点するツールとしても使用されている。こういった目的のためには設計されていないので、このような使用方法は読者や査読者を誤解させる可能性がある[37]。

経済評価の方法も発展していっており、それがアップデートの動機となっている。これには、Second Panel on Cost-Effectiveness in Health and Medicine (「第2回委員会」)が提案した方法のアップデートが含まれる。このアップデートには、経済評価の立場、構造化された表における費用と便益の分類、延命にともなう関連医療費、非関連医療費の組み入れに関する多くの新たな推奨事項が含まれている[38]。医療技術評価(Health technology assessment, HTA)機関も、経済評価を実施し、評価するためのガイダンスを更新している[39,40]。

その他の発展では、医療経済解析計画書(Health Economic Analysis Plan, HEAP)[41]の利用やオープンソースモデルの使用が増加している[42-46]. 後者は、広範なデータ共有方針を有する学術誌において出版される経済評価がますます利用可能になっているため、特に重要であるかもしれない。また、予防接種プログラム[47,48]や低・中所得国における国際保健[49]において政策決定を支援するための経済評価やガイダンスの増加もアップデートの動機となっている。また、公平や分配効果などの、健康アウトカム以外の結果を捉えようとする経済評価も増加してきている[50,51].

最後に、ヘルスリサーチやHTAに、患者や一般市民などのステークホルダーが参加する役割が増加していることは、より広範な読者を意識する必要があることを示唆している[52-54]. これらの発展はすべて、経済評価の報告に関するガイダンスの範囲を拡大し、アップデートすべきことを意味している.

この「Explanation and Elaboration」タスクフォース報告書の目的は、CHEERS 2022報告ガイダンスを詳細に記述することである.これには、どのような状況でCHEERSを使用すべきか、すべきではないか(「スコープ」)、どのように使用すべきか(「CHEERSの使用方法」)が含まれる.この論文の本文には、(可能であれば)エビデンスとともに各報告項目を推奨する根拠、推奨を裏付ける根拠、適切な使用を促進するための具体例が記載されている.

II. 方法

2020年1月, CHEERSの改訂とアップデート, CHEERS チェックリストとそれに付随する文書の改善を目的とし て、ISPOR Good Practices タスクフォースが承認された. CHEERSの改訂プロセスは、ISPOR Good Practices タスク フォース報告書[55]とEQUATORネットワークが作成した ガイダンス[56]に従い、CHEERS 2022 の更新もそこへ登 録した. 以前のCHEERSタスクフォースメンバーに参加 を要請し、加えて特定の専門分野、地理的地域、あるい は雇用環境に基づいてタスクフォースメンバーが追加メ ンバーを指名し、招待した. CHEERS以降に公表された 報告ガイドラインの簡易レビューが行われ、新たな項目 が提案されて、既存のCHEERSチェックリストと統合さ れた. これと並行して、タスクフォースが招集され、患者・ 市民参画(patient and public involvement and engagement, PPIE) に貢献するグループを結成し、統合されたチェッ クリストのレビュー, 記載や追加項目の必要性について の提案が行われた. チェックリスト案はCHEERSタスク フォースメンバーが最終的に決定した.

その後、タスクフォースメンバーは、修正デルファイパネル(「デルファイ」)プロセスに参加する経済評価の専門家と、それに加えて学術誌編集、意思決定、HTA、ライフサイエンス業界の立場の専門家を指名した、次に、パネリストはPPIEメンバーとともに、電子メールで参加を要請され、ウェブ調査へと案内された。デルファイプロセスにおける各ラウンドからのフィードバックはタスクフォースメンバーによって議論され、提出された意見に基づいて最終的に項目リストを完成させた。CHEERS 2022 作成における指針は、出版された経済評価が理解可能かつ解釈可能であり、それらを使用する人々により再現可能であるべきである。ということである。

Reporting Involvement of Patients and the Public Version 2 (GRIPP2) チェックリストの全文は、Supplemental MaterialsのAppendix A (https://doi.org/1 0.1016/j.jval.2021.10.008) に掲載されている。デルファイプロセスとパネルの構成、サイズ、回答率、解析アプローチのプロトコルは、Supplemental MaterialsのAppendix B (https://doi.org/10.1016/j.jval.2021.10.008) に記載されている。

III. CHEERS 2022 解説と詳細

1. 適用範囲(scope)

CHEERS 2022 は、あらゆる形式の医療経済評価に用いられることを意図したものである[57]。これには、費用と費用相殺のみを検討する分析(例:費用分析(cost analysis)),費用と結果の両方を検討する分析(例:費用効果分析 [cost-effectiveness analysis, CEA]/費用効用分析 [cost-utility analysis, CUA],費用最小化分析,費用便益分析 [CBA]),あるいは、公平性の評価(例:分配費用効果分析)など個人に対する利益と害のより幅広い評

価(例:拡張されたCEA/CBA)が含まれる。単に費用を 比較する一部の研究がCBAと呼ばれていることは承知し ているが、この用語は健康アウトカムの金銭的評価を含 む研究に対して使用することを推奨する。経済評価には 関連しているものの、予算影響分析(budget impact analysis)や制約のある最適化研究は、CHEERSガイダンスの範 囲外である。これは、人口動態や実施可能性の制約に関 する追加報告が必要であり、他の報告書で対応されるも のだからである[58.59]。

CHEERS 2022 の主な対象者は、経済評価を報告する研究者と出版物を評価する査読者や編集者である。経済評価の実施に関するガイダンスではないが、研究を計画する際には報告要件を熟知しておくことが分析者にとって有用になるだろう。意思決定における透明性が重視されるようになってきていることから、CHEERSは報告に関するガイダンスが必要なHTA機関にも同様に有用である可能性がある[60]. HTAや経済評価の使用は世界的にますます一般的なものとなってきている[3]. ガイドライン作成にあたり、タスクフォースは、報告ガイダンスがどのような社会的、政治的状況においても有用であることを保証するため、項目別の例を含めて、経済や医療制度が開発途上にある地域に特有の問題について考慮した。

CHEERSは、健康に影響を与えることを目的とした介入に関連しており、単純な介入と複雑な介入の双方に広く適用可能であるべきである。これには、例えば、研究者主導のもの、あるいは商業的な製品(例:医薬品、巨大分子、細胞・遺伝子・組織治療、ワクチン、医療機器)を含むケアに関するプログラム、公衆衛生や社会的ケア介入、ケアプロセス(例:e-ヘルス、ケア連携、臨床決定ルール、クリニカルパス、情報、コミュニケーション、医療及び関連医療サービス)、ケアの再編成(例:保険の再設計、代替的な資金調達アプローチ、包括ケア、診療範囲の変更、職場介入)が含まれる。

また、CHEERSは数学的モデリングにも実証的研究 (例:患者レベルやクラスターレベルのヒトを対象とした試験)にも適用できる。CHEERSは、経済評価のシステマティックレビューに使用することができるが、その使用は、システマエティックレビュー自体の質ではなく、個々の研究報告の質の評価に限定すべきである。チェックリストには妥当性が確認されたスコアリングシステムがないため、スコアリングツールとして使用すること は、誤解を招く結果につながるおそれがあり37,これは全く推奨されない。システマティックレビューで報告の質を評価するために使用する場合、報告の完全性を項目ごとに定性的に評価するのが適切なアプローチである。CHEERSを適用する場合、使用者は追加の報告ガイダンス(例:無作為化対照試験、患者・市民参画、モデリング、健康状態のための選好尺度)を検討しなければならないことがあり、本報告書全体を通じてそれらが参照されている。

2. CHEERSの使用方法

CHEERS2022 (チェックリストとExplanation and Elaborationタスクフォース報告書) は、CHEERS2013 に代替 するものであり、CHEERS2013 は今後使用されるべきで はない. 新しいCHEERSチェックリストには、28項目と それに関する説明が付随している. 主な変更点を囲み1 に記載する. 以下の各項では、チェックリスト項目(表 1) とその内容, 出版された経済評価を解釈する上でな ぜ重要なのかを説明する. 可能であれば、主張を裏付け る実証的エビデンスと具体例を示す. 提供されたすべて の例は、読者の理解をすすめるためオープンアクセスの ものとなっている. 具体例がその他の研究や文献構成要 素(例:図)を参照する場合、本報告書内での参照と混 同することを避けるため、例内の参照と構成要素ラベル として再表示した. 項目と推奨事項は, (1)表題, (2)要旨, (3)緒言, (4)方法, (5)結果, (6)考察, (7)その他の関連情報 の主要な7つのカテゴリーに分類される.

チェックリストの使用者は、関連情報が記載されている論文のセクションを指定する必要がある。刊行プロセス中やその後に、改行や行番号の変更が生じた場合、行番号やページ番号の参照が混乱するため、段落番号付きの見出しを使用することを推奨する。項目が特定の経済評価に適用されない場合は(例:費用分析における項目11~13、非モデリング研究における項目16と22)、チェックリスト使用者は「該当しない(Not Applicable)」と報告することが推奨される。情報が報告されていない場合、チェックリスト使用者は「報告されていない(Not Reported)」と記載することが推奨される。CHEERSは報告をガイドし、情報を捉えることを意図しているため、「実施されていない(Not Conducted)」という用語は避けることが望ましい。

囲み 1 2022 CHEERS: 2013 CHEERSからの主な変更点

- ・ 患者やサービス利用者, 一般市民, コミュニティ・利害関係者の関与や参画に関する項目を追加した.
- ・CHEERSがより幅広く受け入れられるように、費用便益分析や公平(equity)費用効果分析・分配(distributional)費用効果分析に専門用語を拡張した.
- ・ 医療経済解析計画書についての報告や利用可能性に関する項目を追加した.
- ・ 分配効果の特性を明らかにする項目を追加した.
- ・ モデルに基づく方法と臨床試験に基づく方法の区別に関する項目を削除した.
- ・モデルが公開されている場所の報告に関する推奨を追加した. ロックされていないモデルを編集者や査読者と共有することを促した.

表1 CHEERS 2022チェックリスト

セクション/トピック	項目番号	報告ガイダンス	報告カ所(各 セクションの 段落番号)
表題	1	経済評価の研究であると特定できるものとし、評価対象や比較対照の介入を明確にする.	
要旨			
要旨	2	構造化抄録を用いて、背景や重要な手法、結果、その他の分析について 説明する.	
緒言			
背景と目的	3	研究の背景、スタディ・クエスチョン、政策あるいは臨床におけるどの ような意思決定に関連するか.	
方法			
医療経済解析計画書	4	医療経済解析計画書(HEAP)が作られているかどうか、それがどこで入手可能か.	
対象集団	5	対象集団の特徴(年齢のレンジ、人口動態的・社会経済的・臨床的特徴など)を説明する.	
設定と場所	6	結果に影響を及ぼしうる関連背景情報について提供する.	
評価対象技術 / 比較対照技術	7	評価対象や比較対照の介入や戦略について、それを選択した理由も含めて説明する.	
分析の立場	8	研究に用いた立場について、それを選択した理由も含めて説明する.	
分析期間	9	研究に用いた分析期間について、それが適切な理由も含めて説明する.	
割引率	10	割引率について、その率を選択した理由も含めて報告する.	
アウトカムの選択	11	益や害を記述するためにどのアウトカムを用いたか.	
アウトカムの測定	12	測定された益や害を捉えるために、どのようにアウトカムを用いたか.	
アウトカムの価値付け	13	アウトカムを測定し、価値付けするために使用した集団や方法について説明する.	
資源・費用の測定と価値付け	14	費用をどのように価値づけたか説明する.	
通貨, 価格の時点, 換算	15	資源消費量を推計した日と単価,通貨とその換算年を報告する.	
モデルを使用する根拠と説明	16	モデルを使用する場合は、その詳細と使用した理由を説明する。モデル が公開され利用可能な場合は、どこでアクセスできるのか報告する。	
分析と仮定	17	解析のための全ての手法、統計的に変換されたデータ、外挿法、モデルの妥当性確保のために用いた手法を説明する.	
異質性の明確化	18	サブグループによって研究結果がどのように変わるのかを推計するのに使用した方法を説明する.	
分配効果の明確化	19	どのように影響が個人間に分布するか、どのような調整により優先すべき集団を反映させるか.	
不確実性の明確化	20	分析において不確実性の原因を明確化するための方法について説明する.	
研究によって影響を受ける患者 やその他の人々の参画方法	21	研究デザイン上で、患者、サービス利用者、一般市民、コミュニティ、 利害関係者(例:臨床医や支払者)を参画させる方法について説明する.	
結果			
研究に用いたパラメータ	22	不確実性や分布の仮定も含めて,分析上の入力値(値, 範囲, リファレンスなど)を報告する.	
主要な結果の要約	23	関心のある主要なカテゴリーにおいて費用やアウトカムの平均値を報告 し、それらを最も適当な包括的指標で要約する.	
不確実性の影響	24	結果に影響する分析上の判断,入力値,予測に関する不確実性について 説明する.該当すれば、割引率の選択,分析期間の選択に関する影響も 報告する.	
研究によって影響を受ける患者 やその他の人々の関与の影響	25	患者/サービス利用者,一般市民,コミュニティ,利害関係者の参画によって,研究の方法あるいは結果にどのような違いをもたらしたか報告する.	
考察			
研究結果, 限界, 一般化可能性, 現在の知見	26	主要な結果, 限界, 考慮できていない倫理あるいは公平性に関する検討, これらが患者や政策, 臨床にどのような影響を与えるか.	
その他の関連する情報			
資金源	27	研究がどのように資金提供され、資金提供者が研究の特定、デザイン、 実施、分析の報告においてどのような役割を果たしたか.	
利益相反	28	学術誌や ICMJE(医学雑誌編集者国際委員会)の規定に従って、著者の利益相反について報告する.	

前述の通り、タスクフォースは、CHEERSの作成過程においても、適切な報告に必要な情報の量は、ほとんどの学術誌において、従来のスペースを超えることを理解している。したがって、推奨事項を今回作成するにあたり、著者や学術誌は、オンラインのAppendixやその他の手段を用いて、読者が必要な情報を入手できるようにすることを想定している。

CHEERSの普及と適切な使用をうながすため、著者はオープンアクセスであるこのExplanation and Elaboration タスクフォース報告書をよく理解し、これを引用するよう推奨する。さらに、著者と編集者の使用を促進するため、テンプレート、対話型フォーム(https://ispor.org/cheers)、教育資料も作成した、著者はCHEERS[61]及びEQUATOR[62]のウェブサイトを閲覧し、利用可能なものを発見することを勧める。

IV. チェックリスト項目

1. 表題

項目 1. 表題:経済評価の研究であると特定できるものとし、評価対象や比較対照の介入を明確にする.

説明: 文献検索により経済評価であることが容易に特 定できる表題とする. 毎年250万件以上の研究論文が公 表されており、この数は増加し続けている[63]。 関心のあ る論文が特定できるかは、効果的な検索戦略に依存して いる. 先行研究では、経済評価を特定するための現在の 検索方法では、関連する研究を捕捉しきれないことが示 唆されている[64]. したがって、文献検索の感度と精度を 最大限に高めるためには、経済評価を電子データベース に正確に索引付けすることが不可欠である. 著者は、表 題中に「経済評価 (economic evaluation)」という用語を 使用し、評価対象や比較対照の介入技術、研究上の設定 を明記することにより、経済評価の適切な索引を確実に し、発見可能性を高めることが推奨される。その他の方 法として(あるいは追加で),分析の形式を定義するため に、明確な用語を使用すること(例:「費用効果」、「費 用効用」、「費用便益」、「分配費用効果分析」) も勧められる.

項目1の例:表題[65]

「英国の重症精神疾患患者に対する標準的な禁煙サービスと比較した専門医による禁煙パッケージの費用対効果:SCIMITAR+研究による試験に基づく経済評価」

2. 要旨

項目 2. 要旨:構造化抄録を用いて、背景や重要な手法、 結果、その他の分析について説明する.

説明:学術誌や報告ガイドラインでは、原著論文や システマティックレビューを報告する際に構造化抄録を 使用することが推奨されている[32,34]. 構造化抄録には、 研究に関する重要な情報を読者が迅速に見つけることができる見出しが含まれている。学術誌によっては、使用する見出しに関するガイダンスが示されている場合があり、見出しは研究や著者の好みによっても異なる可能性がある。

一般的に、要旨は論文をスクリーニングし、さらなる査読に進むかどうかの基礎として用いられる。さらに、かつて一部の読者は要旨のみにしかアクセスできなかったが、これは論文のオープンアクセス化が進展するにつれて一般的ではなくなってきている。過去のCHEERSタスクフォース報告書は、公表された経済評価の要旨について、全般的に重要な情報が欠けていたり、不正確であったりしたため、その報告の質に改善が必要であるというエビデンスを強調していた[4]. 要旨は、読者が経済評価の適応可能性を評価できるよう、また研究の正確な要約となるよう十分詳細に記述すべきである。

著者は、以下のようなものを経済評価の構造化抄録を含めるべきである。研究の目的、研究対象集団・設定(国など)、評価対象と比較対照、分析期間、インプット(入力値)、立場、通貨年、割引率などの重要な方法、ベースケース分析や重要なその他の分析などの結果(費用やアウトカムの平均値)、結論である。結論では、潜在的な患者・一般市民への影響、政策や患者ケアへ適用する際の影響について示し、不確実性に関する分析の影響を説明することが望ましい。目安として、300ワードを上限とすることを推奨する。それでも、学術誌には独自の上限があり、特に複雑な論文においては、しばしばこの上限を超える必要があるかもしれないことを理解している。

著者はさらに、患者、医療従事者、一般市民など、非専門家に役立つような、自身の研究の簡潔な要約(Plain Language Summary, PLS)を作成することを検討する必要がある。さらに、要旨やPLSが、論文本体の内容と一致していること、すべての情報が本文に記載されていること、結論が変わらないことを著者が確認するよう推奨する.

項目2の例:要旨[66]

緒言:ドラベ症候群の治療にはカンナビノイド油の使用が増加しているが、このアプローチの長期的な費用とアウトカムは不明である.したがって、小児のドラベ症候群の治療として、カンナビノイド油を補助的治療(クロバザム及びバルプロ酸への上乗せ)として用いた場合の費用対効果を、補助的スチリペントール、あるいはクロバザム及びバルプロ酸と比較検討した.

方法:カナダの公的医療制度の立場から、カンナビノイド油、スチリペントール(いずれもクロバザム及びバルプロ酸に上乗せする)をクロバザム及びバルプロ酸と比較する確率費用効用分析を実施した. 5歳から18歳までの小児コホートにおいて、発作頻度に関するモデル状態からなるマルコフモデルを用いて、費用と質調整生存年(QALY)を推定した.モ デルへの入力値は文献から入手した。補助療法としてのカンナビノイド油、補助療法としてのスチリペントール、クロバザム/バルプロ酸の費用対効果を逐次的に解析した。シナリオ分析では、分析の立場と他の仮定の影響を検討した。すべての費用は2019年のカナダドルで表され、費用とQALYは年間1.5%で割引された。

結果:公的医療制度の立場から、補助的カンナビノイド油の使用によるQALYあたりの増分費用は、クロバザム及びバルプロ酸と比較して32,399ドルであった。スチリペントールはカンナビノイド油と比べて劣位であり、QALYはより少なく、費用もより高額であった。支払意志額の閾値50,000ドルでは、カンナビノイド油が76%の確率で最適な治療薬であった。社会的立場からは、カンナビノイド油がスチリペントールとクロバザム/バルプロ酸と比べて優位であった。結果の解釈はモデルや入力値の仮定に影響されなかった。

結論:クロバザム/バルプロ酸と比較して,意思決定者が1QALYの獲得あたり32,399ドル以上を支払う意志があれば、補助的なカンナビノイド油はドラベ症候群に対して、費用対効果のよい治療法になる可能性がある。カンナビノイド油ではなく、スチリペントールへの資金提供を継続する機会費用について、検討すべきである。

3. 緒言

項目 3. 背景と目的:研究の背景, スタディ・クエスチョン, 政策あるいは臨床におけるどのような意思決定に関連するか.

説明:読者は、なぜその研究が行われたのか、なぜ特定の政策的・臨床的決定について言及されているのかを理解する必要がある。したがって、著者は、研究の動機に関する明確な記述や、スタディ・クエスチョン(すなわち、意思決定の問題)、保健政策や臨床上の決定におけるその実際上の関連性、患者一般や集団に対するその重要性を説明するべきである。

研究の動機は研究者自身の関心を反映している場合もあるが、新しい治療や介入について償還の可否を判断するなど、意思決定者のニーズを満たすための経済評価がますます行われるようになってきている。研究が意思決定者のために、あるいは特定の意思決定の問題に対処するために実施された場合、その概要を示すこと。そうでない場合は、研究課題の重要性を説明すること。

「研究の目的は治療Xの費用対効果を評価することであった」と記載するだけでは不十分である。 スタディ・クエスチョンや意思決定の問題の正確な明確化は、報告項目5~8と一致していなければならない。 研究対象集団やサブグループ,設定と場所,研究の立場,評価対象技術や比較対照技術を記載する.

項目3の例:背景と目的[67]

最近のミスマッチについて、オランダの規制当局 は2019年から2020年のインフルエンザシーズンに[3 価インフルエンザワクチン(TIV)]から4価インフ ルエンザワクチン(QIV)に切り替えたことで対応 した[引用を提示]. QIVには両方のB型株が含まれ ており、将来のミスマッチを潜在的に防ぐことから、 QIVはTIVよりも良好な健康アウトカムをもたらす可 能性があるが、QIVはTIVより高価でもある. オラン ダでは、これまでのところ、TIVをQIVに置き換えた 場合の臨床的、経済的効果について、過去8回のイ ンフルエンザシーズンにオランダで実施されたと仮 定した場合のQIVの費用対効果を推定する簡易な静 的モデルによってのみ捕捉されている [引用を提示]. ワクチン未接種者に対する群効果の間接的影響を含 め、ヒトにおける感染の動的な複雑性を十分に捉え られるようデザインされた統合解析は、まだ実現さ れていない. これらの因子は、インフルエンザに対 する国内予防接種プログラムの費用対効果に大きな 影響を及ぼす可能性がある. そのため, 本試験の目 的は、TIVからQIVへの切り替えの増分価格が依然と して費用対効果がよいことを動的モデリング用いて 評価することであった.

4. 方法

項目 4. 医療経済解析計画書: 医療経済解析計画書 (HEAP) が作られているかどうか, それがどこで入手 可能か

説明:現在、臨床試験では統計解析計画書が日常的に作成されており、結果や解析が選択的に報告されることにより生じるバイアスが存在しないことが読者に再保証されている。それにもかかわらず、統計解析計画とは対照的に、医療経済解析計画書(health economics analysis plan, HEAP)は、経済評価においてあまり一般的ではない。最近の調査では、英国の臨床試験ユニットの回答者のうち常に何らかの形でHEAPを使用しているのは約30%にすぎず、そこで用いられているアプローチにはほとんど一貫性がなかったことが判明した[68]。さらに、経済評価は臨床試験と並行して実施されるだけでなく、代替的な試験デザインや経済モデルに基づいて行われる場合もある。一方で、仮説検定のためのリアルワールド二次データ研究については、透明性を改善し、信頼を構築するための最近の取り組みがある[69]。

現在、HEAPの策定に関する標準化されたガイダンスはないが、最近実施された専門家によるデルファイコンセンサス調査では、HEAP内に組み入れる必要があると考えられる 58 のコア項目が特定された[70]. これは無作為化対照試験に並行して実施される経済評価に重点を置いたものであるが、あらゆる種類の経済評価(モデルに

基づくもの、観察研究に基づくものなど)のテンプレートとしても有用であると考えられる。HEAPの使用はまだ初期段階にあるが、著者は医療経済解析計画書が策定されたかどうか、また読者がどこで参照できるのかを示すべきである。著者は、アクセス可能なHEAPを補足情報として含めるか、あるいはアクセスを支援するためのオープンアクセスレポジトリに含めることが推奨される。

項目4の例:医療経済解析計画書[71]

経済分析はintention-to-treat (ITT) の原則と事前に合意された解析計画に従った (付録X参照).

項目 5. 対象集団:対象集団の特徴(年齢のレンジ,人口動態的・社会経済的・臨床的特徴など)を説明する.

説明:読者が、自分たちに関心がある集団や潜在的な サブグループへの研究の適用可能性を評価するため、対 象集団や特定可能なサブグループの特性に関する情報を 必要とする. 介入の費用や結果が集団の特性によって異 なることを考慮すると、介入の経済的影響はサブグルー プ間で大きく異なる可能性がある. 評価結果に影響を及 ぼす可能性のある母集団の特徴(年齢のレンジ、社会的 性別 (gender), 生物学的性別 (sex), 所得水準, 民族集 団など)や臨床的特徴(重症度,疾患のサブタイプ,組織 学的特徴など)を理解することは、特徴が異なる可能性 のある地域への結果の移転(transfer)(一般化)に役立つ. 多くの場合、有効性の推定を行う試験では、経済評価の ためのベースライン特性が定義される. 単変量リスク因 子 (例:特定の遺伝子型あるいは表現型の有無),多変量 リスク因子 (例:多変量リスク方程式により決定した一 連の心血管系リスク)と関連するサブグループが存在する ことがある.

臨床試験におけるサブグループ解析の実施,報告,解釈が不十分なケースが多いことを示唆する多くのエビデンスがある[72-77]. 例えば,仮説の生物学的妥当性や事前に定められたサブグループ検定など,それらの結果を含めたり,解釈することを支持するかもしれない要因についての報告をするか,参考文献を提示すべきである[78].

項目5の例:対象集団[79]

「参加者は、総コレステロール濃度が3.5 mmol/L (135 mg/dL) 以上であり、冠動脈疾患・脳血管疾患・その他の閉塞性動脈疾患、糖尿病または(65 歳以上の男性の場合)高血圧治療歴のある40~80歳の男女であった。(中略)参加者を5年間の推定主要血管イベントリスクによって5つの同様の規模の群に分けた。各群の平均リスクは12%~42%であった(非致死性心筋梗塞あるいは冠動脈死亡リスク4%~12%に相当する).」

項目 6. 設定と場所:結果に影響を及ぼしうる関連背景情報について提供する.

説明:経済評価は、資源配分の決定が検討されている場所や設定において、関連する問題に対処する。これには、地理的な場所(単一あるいは複数の国)、特定の医療環境(一次、二次、三次医療、あるいは地域/公衆衛生介入)、支払い計画(HMO、国民健康保険、NHS)・教育・法的システムなどのその他の関連分野が含まれる[57]. 読者が研究結果の外的妥当性、一般化可能性、特定の設定への移転可能性を評価できるように、介入が行われるシステムの場所、設定、他の関連する側面の明確な説明が必要である。その後、著者は「考察」の項(項目22を参照)でシステム固有の因子を参照しながら、結果を解釈できる。

項目6の例:設定と場所[80]

「本試験は、アルゼンチン郊外の貧しい地域(ブエノスアイレス州、ミシオネス州、トゥクマン州、コリエンテス州、エントレ・リオス州)の公営一次医療センター18ヵ所で実施された。クラスター無作為化は地理的地域によって層別化され、一次医療センターは対照群あるいは介入群に無作為に割り付けられた。

項目7. 評価対象技術/比較対照技術: 評価対象や比較対 照の介入や戦略について、それを選択した理由も含めて 説明する.

説明:臨床試験と並行して実施する経済評価においては、当該試験における介入のみを比較するが、モデルに基づく評価では、より広範な技術を評価することができる。介入や使用できる技術は国や環境によって異なる可能性があるため、対象とする介入について関連する性質を説明することが重要である。これには、治療(行動的介入や非薬物的介入)の強度や頻度、薬剤投与スケジュール、経路、投与期間が含まれる。

複合的介入 (complex intervention) の経済評価を報告 する際には、特に考慮すべきである。複合的介入とは、 相互作用する複数の構成要素からなり、介入の提供にあ る程度の柔軟性を与えることができるものである 2. 介 入がどのように実施されたかを包括的に理解できるよう に、介入の複雑性や供給方法のばらつきなど、介入の要 素の詳細な説明をする、必要に応じて、経路図を用いて 介入を示すことができる. 複雑な介入の説明の指針とし て、関連するチェックリストとガイドラインを参照する ことができる. 例えば、Template for Intervention Description and Replication (TIDIeR) チェックリストは介入を 説明する有用なテンプレートである[81]. 一方, Criteria for Reporting the Development and Evaluation of Complex Interventions in healthcare: 改訂ガイドライン (CReDECI 2) は複雑な介入の報告に関する具体的な推奨を概説して いる[81].

比較対照技術には「何もしない」,「現在の診療」,「最も費用対効果のよい代替治療」などが含まれるかもしれないが,これらの基礎となる内容や行為については,引

き続き詳細に説明すること. 著者は、特定の比較対照技術を選択した理由を説明し、関連する可能性のあるすべての比較対照を記載し、より一般的な、より低価格な、あるいはより有効な比較対照を検討しなかった理由を説明することを検討すべきである.

項目7の例:評価対象技術/比較対照技術[83]

「[心血管系リスク軽減] 介入群に無作為割り付けされた患者は、投薬治療管理レビュー、臨床検査評価、個別化されたCVリスク評価と教育、処方推奨、調整や新規処方、毎月の薬剤師による追跡調査来院(少なくとも3~4週間ごと)を3ヵ月間受けた、介入は、現行のカナダのガイドラインに基づいて作成されたクリニカルパス(www.CKD pathway.ca; http://www.epicore.ualberta.ca/epirxisk)の規定されたプロトコルに基づいた。通常ケア群は上記の介入を受けなかったが、通常の薬剤師と医師によるケアを受けた」

項目 8. 分析の立場:研究に用いた立場について、それを選択した理由も含めて説明する.

説明:分析の立場とは、評価対象技術/比較対照技術と関連して、どのような費用と結果を評価するかという観点である。患者の立場、施設の立場(例:病院の立場)、医療費支払者の立場(例:疾病基金、米国のメディケア)、社会的立場など、研究は1つあるいは複数の表明された立場から分析を実施することができる。ほとんどの研究は、医療システムや支払者の立場(例:英国の国民保健サービス、米国のメディケア)、社会の立場から実施される[84]、医療システムや支払者の立場には通常、介入自体の費用やフォローアップの治療費などの直接医療費が含まれる。また、社会の立場からは、社会に対するより広範な費用(例:健康不良や早死による生産性損失、インフォーマルケアの費用、刑事司法制度などの他部門の費用)も推計する[38].

これらの立場は標準的な定義がないため、しばしば不 明確なものになりがちである[84]. そのため、著者は立場 (例:医療システム, 社会) について, 含まれる費用や 関連する構成要素 (例:直接医療費,直接非医療費,間 接/生産性費用など)や、どのように対象集団や意思決定 のニーズに適合するか、といった点から説明すべきであ る. 第2次パネルによる構造化された表 (「impact inventory」と呼ばれる)を作成することは、どのような費用と 結果が考慮されたかを伝えるのに有用な可能性がある[38]. これは、結果を報告する際に、部門や立場にわたる各要 素の影響を報告する際にも役立ち、強く奨励される(項 目 23 を参照) [38]. 国・地域固有のガイドラインや経済 評価方法を記載した文書への参照を、それらを選択した 理由とともに示すことができる. また、著者はその立場 を選択した理由と、該当する場合はそれをサポートする ために研究を実施した、意思決定者についても説明する.

項目8の例:分析の立場[38]

「限定的な社会の立場がとられ、この立場では医療費と医療部門外の費用(すなわち、MSに関連する生産性損失、インフォーマルケア、機器・補助具・設備のための患者の自己負担額、在宅支援・移動・個人的支援などの地域サービス)が含まれた.」

項目 9. 分析期間:研究に用いた分析期間について、それが適切な理由も含めて説明する.

説明:分析期間は、介入の費用と結果が評価、報告される期間の長さを指す。特に予防医療や慢性疾患の治療においては、分析期間の選択に、経済評価の結果や解釈が特に影響を受けやすい可能性がある[86]. 大きな「先行」費用を伴うが、長期間にわたってベネフィットをもたらす介入は、分析期間が長くなるほど、費用対効果がよくなると考えられる。

分析期間は通常、費用と結果の最も重要な差を把握するのに十分な長さであり、観察された試験の追跡期間よりも長いことが多い。このような場合には、研究の追跡調査が終了するまでの結果と、長期的な費用や結果を予測した結果をともに報告することが有用な場合がある。これにより、読者は外挿の仮定の影響を理解することができる。

項目9の例:分析期間[87]

「分析のベースケースでは、起点となる手技の実施から15年間の分析期間を選択した.分析に利用可能な有用性データが集積中であるため、長期の分析期間(死亡まで)は適切でないと考えられた.このような分析期間におよぶ長期の外挿は、かなりの不確実性をともなうと考えられる.しかし、VBTや脊椎固定術(例:可動域の改善による)を受けた患者におけるHRQoLアウトカムの差は、それが骨格成熟に達したときに存在すれば、長期にわたって持続すると予想される.したがって、HRQoLアウトカムの観点からは、中期から長期にわたる妥当な差を把握するために十分な分析期間を選択することが重要であった.シナリオ分析では、追加の分析期間(5,10,20年)を用いた.」

項目 10. 割引率:割引率について、その率を選択した 理由も含めて報告する.

説明:医療介入は、費用と結果に短期あるいは長期の影響を及ぼす可能性がある。割引率は、将来生じる影響と比較したとき、現時点すぐの影響に対する社会的選好を反映するものである。介入後1年を超えると、分析者は時間選好(time preference)や破局的なリスク(catastrophic risk)、将来予想されるより高レベルの消費について、その限界効用が縮小していくことを調整して現在価値を提供することができる。割引率の報告は重要である。その

理由は、特に介入の費用や結果が何年にもわたり現れてこないより一般的な状況では、経済評価の結果が、どの割引率を選択するかに特に影響を受ける可能性があるからである。

分析者は、割引率を変動させた場合の結果への影響を報告する必要があるが(項目23)、これはアウトカムが遠い将来に発生する場合に特に重要である[88]。割引率は普遍的なものではないので、著者は特定の率を選択した理由を述べなければならない。通常、これには各国・地域の経済評価ガイドラインや財務省報告書を引用する。費用とアウトカムの両方を同じ率で割引することを推奨している国があるのに対し、別の国では、異なる割引率を推奨している。短期間(1年以下)の経済評価には割引率を適用しなくもよいが、明確にするために、分析者はこのことを0%として報告すべきである。

項目10の例:割引率[89]

「いずれの場合も(医療費とQALYの両方について)年3.5%で割引を適用した.代替シナリオとして、健康への影響に1.5%の割引率を適用した場合の影響も評価した.これは,感染時点から健康への影響まで時間のラグがあることを考慮すると,3.5%の割引が必ずしも適切ではないとしたCEMIPP報告書に対応したものである.また(中略),これはHPV症例であり,ワクチン接種,感染から生命を脅かす癌の発症までに長い年月がかかる場合がある.そのため,1.5%を選択した」

項目 11. アウトカムの選択: 益や害を記述するために どのアウトカムを用いたか.

説明:医療経済評価において、一連の評価対象技術/比較対照技術の結果の評価には、益と害を反映する1つ以上のアウトカム尺度を選択する必要がある。通常、これらは健康アウトカムであるが、1つ以上のより広範な指標(例:幸福、社会的ケア、再犯、教育的達成)、あるいはいくつかの指標をひとつの複合アウトカムにしたもの(例:質調整生存年[QALY]、障害調整生存年)でもよい。健康アウトカムは標準的な定義(例:重度の増悪)がないことが多く、明確に定義する必要がある。複合アウトカム指標(例:QALY、主要心血管イベント)を使用する場合、複合指標の構成要素が全体の効果にどのように影響を与えているか、読者に明確にしなければならない。

通常、アウトカムの選択は、実施する分析の種類と用いる分析の立場によって異なる。例えば、CEAは一般に臨床アウトカムに焦点を当てており(例:生存年、症例の回避)、一方でCUAや一部のCBAはこれらのアウトカムに対する選好をさらに検討する必要がある。

アウトカムを選択した根拠を記載する. これには通常, 患者,一般市民,主要な利害関係者(例:介護者,医療 提供者,産業界),影響を受けるその他の者へのアウトカ ムの適用可能性に関する説明が含まれる. 主要評価項目 が事前に規定されている場合,著者は、それが定められたプロトコルや臨床試験の公表文献を引用し、事前に規定されたその他の評価項目を除外することの正当性を示す必要がある。著者は、アウトカム選択において、どのように患者、一般市民、コミュニティ、利害関係者が関与したかを説明することが推奨される。

項目11の例:アウトカムの選択[90]

「利害関係者諮問委員会(SAB)、患者デルファイ委員会、公表文献からのガイダンスを用いて個人ベースのマルコフモデルを構築した。直接作用型抗ウイルス薬(DAA)を無治療と比較・評価した(中略)従来のQALYによる健康アウトカム以外に、本試験ではHCV患者デルファイ委員会が開発し、SABがレビューした2つの新たなアウトカム指標を検討した。患者は、「経済的な問題」や「仕事やキャリアへの影響」などの間接的な費用の考慮に加え、HCV感染に起因する重要な問題として「他人を傷つける恐れ」をもつこと特定した。この患者意見を用いて、我々のモデルにおける2つの測定可能な健康アウトカムを開発した。すなわち感染生存年数(infected lifeyears, ILYs)と欠勤日数である」

項目 12. アウトカムの測定:測定された益や害を捉えるために、どのようにアウトカムを用いたか.

説明:アウトカムの変化を測定する方法を記載する. 選択した技術にとって、その臨床アウトカム指標における初めての差が報告された場合、著者は、単一の試験ベース[32,91-94]あるいは統合アプローチ[34,95-99]のための既存の報告チェックリストに従うべきである。分析者は、初めてそれが報告された場合、代替試験デザインあるいはアウトカム指標に関連する具体的な情報についてEQUATORネットワーク[62]に相談すること。

さらに、健康への影響(例:QALY、障害調整生存年)、健康を超える患者や介護者への影響(例:extending the QALY [e-QALY] [100])をとらえる選好に基づくアウトカムでは、追加的に尺度と重み(項目 13)、解析上の考慮事項(項目 17)の報告が必要となるだろう。それは読者に、基本的な要素(例:選好の重み、生存年)が総合的な評価項目にどのように寄与し、尺度がどのように計算されたか(例:曲線下面積法)を理解させるものである.

項目12の例:アウトカムの測定[101,102]

「多施設共同前向きクラスター無作為化DeTa-MAKS試験と並行して、費用効果分析(CEA)を実施した(中略). DCCのリクルート戦略、DCCと参加者の適格基準に関する詳細は別途記載されている(中略). 試験の登録番号はISRCTN16412551である. 認知能力に対するMAKSの効果は、ミニメンタルステート検査(MMSE)によって測定可能であった[引用を提示]. ADLを実行する能力に対する効果は、軽

度認知症及び軽度認知障害(ETAM)を有する人のADLにおけるErlangenテストによって測定可能であった [引用を提示]. MMSE及びETAMの両方をt0及びt1で評価した. どちらの検査も $0\sim30$ ポイントの範囲であり、数値が高いほどパフォーマンスが良好であることを示している.」

「我々は以前、シミュレーションによる200床の一般的な三次救急成人病院におけるクロストリジウム・ディフィシル伝播のエージェントベースモデルを公表した[引用を提示]. このモデルからのアウトプットを用いて、2つの主要アウトカムの観点から、感染制御戦略の費用対効果を評価した:質調整生存年(QALY)あたりの費用、院内発症クロストリジウム・ディフィシル感染症(HO-CDI)回避あたりの費用である。(中略)モデリングの詳細についてはSupplementのe-Appendixを参照のこと.」

項目 13. アウトカムの価値付け:アウトカムを測定し,価値付けするために使用した集団や方法について説明する

説明:選好に基づくアウトカム尺度を用いた解析では、どのようにアウトカムが測定され、価値付けされたかを記述すべきである(例:健康状態「効用値」(Health State Utilities, HSU)、支払い意志額)。新規に開発する場合は、非市場アウトカムについて金銭的な直接の価値付け法に関する報告ガイダンスが作成されている[103](例:表明選好(stated preference)調査[104] [仮想評価法[105]、コンジョイント分析[106]/離散選択実験[107]])。同様に、選択(基準的賭け法や時間得失(交換)法など)やスケーリング(レーティングスケールやレーショニングスケールなど)法など健康状態の選好測定に関する直接法の報告ガイダンスも利用できる[108]。他のアプローチには、QOL尺度あるいはPRO尺度を変換して、HSUを開発する方法がある(すなわちマッピング)、この場合、MAPSを報告のガイドとして用いるべきである[109]。

選好の測定値を得るために、間接法も使用できるかも しれない. 消費者選好 (例:ヘドニック賃金モデル[110]) に関する間接法について、それを説明するのに利用可 能な報告ガイダンスがある. 多属性効用尺度を, 健康状 態の間接的な測定・価値付けに使用する場合 (例: EQ-5D-3L, SF-6D) には、尺度の名称とバージョン、尺度を 用いた調査のフォーマットや頻度, 価値付け法 (例:表 明選好調査の種類),価値付け調査を行った集団のサンプ ルサイズや人口統計学的特性. (代理による) 選好を測 定した対象とそれが適切な理由など、主要な特性を記述 するべきである. これは、潜在能力 (capability) や幸福 度 (well-being)、社会的ケアなど、健康以外の幅広い影 響を測定することを意図した尺度にも適用される(例: ICECAP(Investigating Choice Experiments Capability Measure) [111], ASCOT (Adult Social Care Outcomes Toolkit) [112]. 価値付け方法の詳細とともに、尺度自身のリファレンス

も示すべきである[113].

著者は文献から値を得ることも選択できる. これには, 既に説明したアプローチを用いた研究から、健康状態に ついての選好に基づく測定値や金銭化された値を特定す ることも含まれる。そのような場合には、著者はシステ マティックレビューが実施されたかどうか報告すべきで ある. 一部の研究デザイン(例:疾病費用(cost-of-illness)) では選好に基づく測定値や、支払い意志を反映した金銭 的価値を用いないことを著者は理解する必要がある[114]. HSUのシステマティックレビューについて、報告を助け るためのガイダンスが最近作成された[115]. 読者をガ イドするため、選好の測定値の情報源を引用するときに、 もとの文献の中に記入されたチェックリストがなければ、 著者は適切な報告用チェックリストに記入することが推 奨される. かなりの詳細な情報が要求されることを考 慮すると、この情報を伝えるために著者はSupplementや Appendixを使用することが推奨される.

項目13の例:アウトカムの評価[116,117]

「このアプローチの下で、従来の費用効用分析における健康アウトカム、すなわちQALYを、QALYあたりの支払い意志額で金銭化した。イギリスにおいて回答者自身のQALY獲得に対するWTPを評価した研究(WTPsel)に基づいて[引用を提示]、£23,000を我々は割引されたQALYに適用した.」

「費用対効果分析の主なアウトカム測定値は、5次元3水準のEuroQol (EQ-5D-3L) で測定されたQoLであった[引用を提示].評価項目は、移動の程度、身の回りの管理、普段の活動、痛み/不快感、不安/ふさぎ込みであり、「問題なし」「いくらか問題がある」「極度の問題がある」の3段階でスコア化される、イギリスのタリフを使用し、スコアを-0.59(死ぬより悪い)から1(完全な健康)の範囲の効用値に変換した[引用を提示].オランダのタリフを使用した効用値の範囲は-0.33から1.34である[引用を提示].質調整生存年(QALY)は、効用値から曲線下面積法を用いて算出された.

項目 14. 資源・費用の測定と価値付け:費用をどのように価値づけたか説明する.

説明:医療経済評価における費用の報告には、関連しているが異なる次の2つのプロセスを検討する必要がある:(1)資源・費用要素の特定、測定に使用される内訳の程度(例:マイクロコスティング vs グロスコスティング)、(2)資源・費用要素の価値付け方法(例:トップダウンvs ボトムアップ)[118]. 費用推計法は、方法論的な選択が必要であり、理論的問題と実際の測定可能性の間にトレードオフや妥協をともなう可能性が高いため、研究によって大きく異なる可能性がある[118].

そのため、資源・費用の測定や価値付け方法、それら のデータソースの選択方法について、著者は透明性を保 つことが要求される. 資源の要素のデータソースは、例えば、単一の試験、既存のデータベース、日常的なソース、より広範な文献から得ることができる. 同様に、ボトムアップのマイクロコスティング研究のために資源項目にひも付く価格(単価)は、他のソースから導き出されることがある(例: 国の単価データベース、施設固有の原価リスト). 著者は、マイクロコスティング研究の報告が不十分である可能性を認識すべきである[119].

異なる資源・費用の要素について、異なる方法論的アプローチを用いて公表された推定値を経済評価で採用あるいは引用する場合は、それぞれの方法について説明すること、機会費用に近似するために費用推定の際に行った調整を報告することが適切な場合がある。例えば、資本資産が費用計算に寄与している場合、著者はそれらの資産から得られる潜在的な収益を反映した調整を記述すべきである。ISPOR Good Research Practices for Measuring Drug Costsタスクフォースの報告書において、薬剤費の観点からこれらの問題をより詳細に調査している[120].

項目14の例:資源・費用の測定と価値付け[121].

「予定来院時に医療資源の評価を実施した.患者が使用した治験薬とそれ以外の薬剤は、治験薬記録に記録した.来院間におけるBP関連の医療サービスは、患者日誌を備忘録として記録した.来院時に、使用したすべての医療サービス資源を、BPへの資源の帰属とともに、記録した.(中略)治験薬は様々な用量と期間で処方された.国の処方コスト分析(PCA)データを用いて、治療薬の単位重量当たりの平均費用をもとめ、患者の薬剤使用記録に適用した(ドキシサイクリン£0.0015/mg及びプレドニゾロン£0.0221/mg).PCAデータを用いて、局所ステロイドの使用についても同様に費用計算をした.Hospital Episodes statistics (HES) 及びNational Schedule of Reference Costs (NSRC)を用いて、入院(日数)及び外来受診の費用を推定した.」

項目 15. 通貨, 価格の時点, 換算: 資源消費量を推計 した日と単価, 通貨とその換算年を報告する.

説明:推定された資源量、費用要素とそれらに関連する価格(単価)については、これらの仮定が経済評価の結果に大きな影響を及ぼす可能性があるため、暦年(calendar year)あるいは年度(fiscal year)を用いて日付を報告することが重要である。ほとんどの資源項目、費用要素の価格は、総費用が報告されている同じ年のものが利用可能であるが、一部は、以前のものしか利用できない場合がある。このような場合には、具体的な価格指標、例えば米国のPersonal Health Careデフレーターを適用するなど、価格調整方法を報告する。

使用した通貨は明確に報告しなければならない. 特に, 複数の国に同じ名前の通貨(例:ドル,ペソ)がある場合は明確に報告する. 学術誌の要件に応じて,著者は,

報告を補助するために国際標準化機構 4217 に記載された 慣例 (例:米ドルはUSD, ユーロはEUR) の使用を検討 すべきである。一部の研究には、通貨調整が含まれる場合がある。具体的には、対象となる国で資源項目や費用 要素の価格が入手できない場合や、分析者が結果を広く 使用されている通貨 (例:USD) で報告するか、複数の国の結果を同時に報告することを選択する場合である。

通貨換算を実施する場合、使用した方法(例:購買力平価による方法)を報告する。評価に価格と通貨の調整の両方が含まれる場合は、目標通貨と価格年で示された費用に到達するための段階と、そのためのアルゴリズムを報告する。例えば、Campbell and Cochrane Economics Methods Groupは、国際通貨基金と経済協力開発機構が作成した国内のGDPデフレーター指標値と購買力平価換算率を使用して、特定の目標通貨と価格年に費用を調整するためのガイダンスとそのためのアルゴリズムを提供している[122]。米ドルのような広く使用されている通貨を用いた他国からの研究報告は、様々な介入の費用対効果の比較を容易にするが、Transferability of Economic Evaluations Across Jurisdictions に関するISPOR Good Practicesタスクフォースで概説されているように、注意が必要である[123]。

項目15の例:通貨, 価格の時点, 換算[124]

「我々はベースケースと介入シナリオの費用を2018年の米ドルで推定し、南アフリカの医療制度の立場を採用した(表1). 平均費用は、ケープタウンにおける結核(TB)医療及び診断サービスに関する2018年の推定値を反映している. この推定値は、公表された文献及び南アフリカのNational Health Laboratory Serviceによる公式価格表のレビューによって得られたものである. 前年の費用推定値を米ドルに換算し(該当する場合)、インフレ調整のために南アフリカのGDPデフレーター率5.71%を用いて調整した.」

項目 16. モデルを使用する根拠と説明:モデルを使用する場合は、その詳細と使用した理由を説明する。モデルが公開され利用可能な場合は、どこでアクセスできるのか報告する.

説明:論文では、分析に用いたモデル構造を説明し、研究での使用が適切な理由を説明すべきである。一貫性を保つため、分析者はモデルの種類を説明するために公表されたガイダンスを使用することができる[125-127].この説明においては、分析に使用したモデル構造が、対象疾患において過去の研究で使用されたモデル構造と類似していることに言及してもよい[126,128]. 革新的なモデリングアプローチを用いているならば、このアプローチは、意思決定者に必要なアウトカムに関連しているかもしれない。あるいは、選択したモデル構造が疾患の自然経過、現在の診療実態、疾患領域における過去のモデ

ルと比較した有効性と安全性、これらをより適切に反映できているかどうかに関連しているかもしれない。革新的なアプローチの使用は、モデルに入力するための信頼できるデータがどの程度利用可能かに関連している可能性がある。いずれの場合も、関心のある研究者がモデルを再現できるように、モデル構造を十分詳細に説明する。ほとんどの場合、モデル構造とモデル内での患者の流れを示す図が推奨される。

項目16の例:モデルを使用する根拠と説明[129]

「我々が作成した症状に基づくケア探索モデルで は、対応するTB診断評価の確率に基づき、無症候 性 (asymptomatic), 非特異的 (nonspecific), 古典的 (classic) の3つのTB症状レベルを定義した. 3つの 制約に基づき、これらの症状レベル間の月あたりの 推移確率を算出した:1.進行確率は退縮確率の2倍, 2.生涯におけるTBの自己治癒率は、治療を行わなかっ た場合の死亡率に等しい(未治療症例の死亡率は0.5), 3.無症状期間の平均期間は9ヵ月. これらの値(症状 レベル間の月1回の推移確率、月1回の治療を求め る確率)をマルコフモデルに入力した. このモデル は、Zambia TB REACHプログラムの能動検診(Active Case Finding, ACF) に用いた診断アルゴリズム (CXR, Xpert)を反映するよう構築したものである. 100,000 例がTB/HIVの状態及び症状レベルによって定義され、 1回のACFを受ける機会があることがモデル化されて いる (非特異的及び古典的症状の86%). ACFを受け なかった患者は、症状発現(非特異的症状 20%、古 典的症状 40%) に基づき、分析期間を通して、月1 回の確率で日常治療を受けるとモデル化された. TB が未治療であった患者では、月1回の各サイクル終 了時に, 症状レベルで推移(進行, 退縮) する確率 がある. より詳細なモデル構造及び臨床診断アルゴ リズムは、S1ファイルのS2・S3の表、S1ファイルの S2·S3の図に記載されている. 」(Figure X)

項目 17. 分析と仮定:解析のための全ての手法,統計的に変換されたデータ,外挿法,モデルの妥当性確保のために用いた手法を説明する.

説明:仮定に基づく入力値(モデルの構造的仮定を含む)は、報告の結果を理解するために必要な一連の重要な情報のひとつである。報告書には、分析を再現する可能性がある専門知識(プログラミングやモデルの実行を含む)を有する読者に、必要なすべての仮定と計算のリストを提示すること[128]。査読者や読者とモデルを共有するための様々な方法もある。これは、オープンデータ共有方針のある学術誌では必須である。少なくともロックされていないモデルを査読者と共有することが推奨される。ほとんどの場合、モデルの基本的な説明と計算、仮定だけでは、追加のマクロ、VBA(Visual Basic for Application)のコード、隠れているが重要なその他の詳細

を含む結果を再現するには十分ではない.

著者は、仮定の根拠や基礎(例:特定のデータソース/ 論文、専門家の意見、標準的な診療、単なる便宜的設定) を示すべきである。仮定には、モデル化された集団の特性、 疾患の自然経過、疾患管理パターン(評価対象技術/比較 対照技術の選択や治療経路など)に関する情報が含まれ る[130].

臨床試験あるいはモデルに基づく評価のために,項目 11~15では扱わない,観測値を超えたデータの変換や外挿法など追加の解析方法が必要となる場合がある.これには,選好に基づくアウトカムの算出方法(例:曲線下面積),臨床試験で観察された期間を超える治療効果の持続期間が含まれる.

仮定,数式,モデリングのバリデーションについては, どのような種類のバリデーションを行ったのか,またそ の方法の追加的報告が必要である.必要な情報が広範囲 に及ぶ可能性があることを考慮すると,Appendixやオー プンデータレポジトリーにおいて,既存の公表された報 告書や新規の情報の共有が必要となる可能性が高い.著 者を支援するため,モデリングの補正やバリデーション に関する報告ガイダンスが公表されている[131-133].

項目17の例:分析と仮定[134,135]

「(中略) モデリング方法に関する主な仮定のまとめが表2に示されている. (中略) [モデルは] 公開されており、Open Research Exeterレポジトリーを通じてアクセスできる.」「我々は、両株置換シナリオ下での髄膜炎菌流行の主要な特徴を把握するために [エージェントベースモデルを] 補正した (中略). 2002 年から 2015 年半ば (入手可能な時系列の全期間) までの髄膜炎菌罹患率の年齢分布 (図 [XA])、異なる年齢群間における平均保菌率 (図 [XB])、髄膜炎菌症例の週平均罹患率 (図 [XC]) などである. 我々の目標は、過去の流行の時期に適合するのではなく、図 [X] に示された補正対象に加えて過去の流行の周期性に対してモデルを校正することである. 補正方法の詳細は、付録 [X] に記載されている.」

項目 18. 異質性の明確化: サブグループによって研究 結果がどのように変わるのかを推計するのに使用した方 法を説明する.

説明:異質性と不確実性を切り分けることは、経済評価の結果の解釈に重要である。異なる種類の異質性の影響を適切に探索し、報告するためには、研究結果においてどのように異質性が生じるかを考慮すべきである。これには、治療効果が相対尺度(例:相対リスク、オッズ比、ハザード比)において均質であっても生じる異質性が含まれる。しかし、治療効果に差があり、特定の集団特性が治療効果の予測因子(効果修飾)である場合に、ベースラインリスク(予後)は個人の特性や従来のサブグループの差によって異なる。著者は、両方のタイプの不均一

性を検討するための方法を明確に説明すべきである. 研究の対象集団が均一であると仮定する場合, 著者はこの 仮定の妥当性を示す必要がある.

項目18の例:異質性の明確化[136]

「予定された試験治療期間中の入院及びスタチン 系薬剤の費用について、intention-to-treatに基づく比 較を行った. [the Heart Protection Studyにおける] 過 去の解析では、参加者の異なるカテゴリーにおいて も、シンバスタチン(40 mg/day)の割り付けにより、 [主要な血管イベントの] 発生率がおよそ 25%とい う同様の減少率を示すことが明らかになった. 検討 した異なるサブグループを通じて、血管イベントに 関連した英国の入院費のおよそ22%という同程度の 減少率、スタチン治療費の同程度の絶対差も治療群 間で認められた. そのため、血管イベントに関連し た米国の入院費用の減少率、スタチン治療の米国の 費用における治療群間の絶対差も、参加者の異なる サブカテゴリー間で同様であると仮定された. した がって、特定のサブグループにおける米国の血管イ ベントによる入院費用の絶対減少は、全参加者で認 められた血管イベントによる費用の全体的な減少率 を、その特定のサブグループのプラセボ群で認めら れた血管イベントによる費用にあてはめることによ り得た。サブグループ内の血管死の絶対減少も同様 に推定された. |

項目19.分配効果の明確化:どのように影響が個人間に分布するか、どのような調整により優先すべき集団を反映させるか。

説明:分配効果 (distribution effect) の明確化は、例えば社会経済的地位、民族、地理的な場所などの社会的変数や、障害・疾患の重症度などの疾患カテゴリー、これらに基づき評価された介入の公平性 (equity) への影響について意思決定者が関心のある場合に重要と考えられる[137]. 著者は、集団に特異的なパラメータ (例:農村部ではコストが高い、高リスク群ではアドヒアランスが低い)の使用、年齢[138]などの分布要因ごとに用いる選好に基づく尺度での異なる重み、希少疾患や終末期治療などの特別な場合における費用対効果閾値の調整[139]などによって、分配に関する懸念に対処するために使用した方法を説明するべきである.

分配効果を明確化するための基盤となる前提を説明するべきである。例えば、これは、各国・地域における方法論ガイドラインの要件、あるいは平等主義やその他社会における正義の分配的な概念を発展させたいという著者の願望にもとづく可能性がある。公平性・効率性影響平面(equity-efficiency impact plane)など、効率性と公平性のトレードオフに関する懸念を評価するための方法を説明する[137]。評価において分配上の懸念が考慮されなかった場合には、その旨を明記すること。

項目19の例:分配効果の明確化[140]

「モデルへの入力において社会経済的差異を変化させることが [分配費用効果分析の] 結果に及ぼす影響を探索するため、一連のシナリオ分析が実施された. これは緒言で提起された4つの問題に対応している。各シナリオ分析で推計された介入の影響を,前述のモデル入力における社会経済的差異のすべてを組み入れた結果からなるベースケース推定値と比較した. ベースケースは,介入の影響の最もよい推計値を表すと仮定する. ベースケースの結果と各シナリオ分析の結果は,公平性・効率性影響平面における散布図として示される. ベースケースとの差は,各シナリオがどの方向や程度で,各モデルが推計する介入の健康の分布に対する効果に,影響があるかを反映している. |

項目 20. 不確実性の明確化:分析において不確実性の原因を明確化するための方法について説明する.

説明:著者は不確実性を把握するための方法を報告す べきである. 個々の患者データ (Individual Patient Data, IPD) を用いた経済評価に関連する統計的不確実性は、増 分費用と増分効果の信頼区間、あるいはベイズ信用区間 の報告によって反映される.しかし、信用区間あるいは 信頼区間の推定には問題があり、誤解を招くおそれがあ るため、費用効果平面と費用効果受容曲線が、より適切 な提示ツールであると考えられる[141]. これらの提示手 法は、不確実性を解釈するための推測的アプローチと比 較して、意思決定ともより一貫性がある。 モデルに基づ く経済評価とのハイブリット分析(IPD解析とモデルを 組み合わせたもの)において、パラメータの不確実性は、 決定的感度分析における個々のパラメータ、あるいは確 率感度分析における全パラメータ同時のものとして表さ れるかもしれない. 確率感度分析を使用する場合, IPD解 析と同じ提示ツール(費用効果平面/受容性曲線)を使用 することができる. 決定的感度分析では、トルネード図 が有用である

サンプリングに関連しない不確実性、例えば方法論的な不確実性(例:割引率の選択、単価ベクトル、研究の立場)や構造的な不確実性(例:治療期間、長期的な有効性、分析に含まれるイベント、使用したモデル)を捉える手法も説明すること.

項目20の例:不確実性の明確化[136]

「獲得生存年、入院費用の削減、獲得生存年あたりの費用の推定値におけるパラメータの不確実性を、モデルで用いたイベント及び費用の式のノンパラメトリックブートストラップ法により評価した[引用を提示].(中略)選択した分析パラメータの変更が費用対効果の推定値に及ぼす影響を評価した.第一に、the Agency for Healthcare Research and Quality's

Medical Expenditure Panel Surveyにおける米国人集団を代表するサンプルから得られた性・年齢ごとの健康関連QOLによって予測余命を調整した。第二に、開始後6年目までに35%に低下する(すなわち、最初の5年間の継続率は80%,70%,60%,50%,40%,35%)継続的なスタチン療法について、費用対効果の推定値への影響を評価した。最後に、1日あたり0.20ドルのシンバスタチン40 mg(後発品)を生涯使用することの費用対効果を評価した。(英国の設定で与えられているとおり[引用を提示])[the heart protection study]の適格年齢制限を5歳超えてさらに外挿し(すなわち、35歳から85歳まで),血管リスクを5年[主要血管イベント]リスクとして5%にまで下げた。(HPSの最低五分位における12%リスクと比較して)]

項目 21. 研究によって影響を受ける患者やその他の 人々の参画方法:研究デザイン上で、患者、サービス利 用者、一般市民、地域コミュニティ、利害関係者(例: 臨床医や支払者)を参画させる方法について説明する.

説明: PPIE (Patient and Public Involvement and Engagement), すなわちより広範な地域コミュニティの参画, ステークホルダーの関与は, 研究の妥当性, 受け入れ可能性, 適切性を高め, 最終的にはその質を改善することを目的とする[142]. 地域コミュニティの参画は, 意思決定, 実施, 政策のあらゆる側面において, 地域住民が直接的に関わるものである. 地域コミュニティの参画は, 透明性, 説明責任, 様々な状況における最適な資源配分を改善するために, 地域社会の能力, 地域構造, ローカルオーナーシップを強化することができる. PPIEや地域コミュニティ参画による研究への貢献を理解するために, それらが医療経済評価に含まれる場合には, ステークホルダーやPPIE に関する方法の報告を推奨する.

PPIEと地域コミュニティの医療経済評価への参画はまだその初期段階にあることを理解した上で[143,144], この項目では著者が用いたあらゆる方法を報告することが必要となるよう, その範囲を意図的に広くとっている. PPIEに対する一般的方法の報告に加え, 著者はGRIPP2ガイダンスを用いてPPIEのより具体的な詳細を報告することを望むかもしれない[145]. 経済評価を行うにあたって, 以前からの利害関係者(臨床医, 支払者, 業界など)の関与についても同様に言及すべきである.

項目 21 の例:研究によって影響を受ける患者やその他の人々の参画方法[146]

「我々は、ワクチン接種に関心があり、モデリングなどの複雑な領域での作業も不快でないと感じた幅広い背景を有する個人からなる公的リファレンスグループを作成した.連続する21回の会議、すなわち「知識空間」('knowledge spaces')を用いて、人々が貢献できる可能性のある分野を特定するために、

モデル化に関する熟議の機会を設けた. 各会議では、モデル作成プロセスにおける異なるトピックやステージに焦点を当てた. 熟慮の対象となったものには、[治験責任医師の] リファレンスグループがモデル化プロセスの理解を確実にするためのコンセプトや方法に関するプレゼンテーションが含まれていた.」

5. 結果

項目 22. 研究に用いたパラメータ:不確実性や分布の 仮定も含めて、分析上の入力値(値, 範囲, リファレン スなど)を報告する.

説明:モデルを用いる場合は、同種のモデルについて経験のある査読者、自身の意思決定への一般化可能性を理解しなければならない意思決定者、分析を再現したい関心のある研究者が解釈できるよう、十分な情報を提供しなければならない。使用したすべての入力値やデータソースを含む表を提示することは、完全な報告に不可欠である。各入力値の研究デザインに関する追加情報も推奨される。報告書本文中に主要なパラメータを含む表を提示し、Supplementの表として、すべてのモデルパラメータについて、不確実性の分析に使用した範囲や分布の種類、関連するモーメントを含む実際の分布を含めることは、適切な方法である(例を参照)。これらの値の一部あるいは多くは項目9~17の方法に従って変換されることを考慮すると、研究パラメータは「結果」の項において報告することがより適切である。

項目22の例:研究に用いたパラメータ

Table X

項目 23. 主要な結果の要約: 関心のある主要なカテゴリーにおいて費用やアウトカムの平均値を報告し、それらを最も適当な包括的指標で要約する.

説明:著者は、各群の推計された費用について、主要なカテゴリー(総費用を含む)における平均値を、同様に、各群の関心のある主要アウトカム(該当する場合はアウトカムのカテゴリーを含む)について、その平均値を報告すべきである。結果が割引によりどれほど影響を受けるか、透明性を確保するために、費用とアウトカムの主要カテゴリーにおいて割引ありの平均値と割引なしのものの両方を報告する必要がある。

著者は、異質性の影響も報告すべきである。例えば、 関心のある集団において特定可能なサブグループ別の平 均費用と平均効果の報告などである。同様に、差分の影 響について理解を助けるために、著者は、分析の立場ご とに平均費用とアウトカムの内訳を報告することを強く 考慮すべきである(該当する場合)。重み付け尺度の作成 に分配に関する仮定を使用する場合は、重み付けした結 果と重み付けしていないものの両方を示して解釈を助け る必要がある.

次に、増分費用効果比、費用便益比、純健康便益・純金銭便益などの要約指標を追加報告することができる。介入がDominant(優位)やDominated(劣位)であるかを問わず、負の増分費用効果比を報告することは意思決定に適切ではなく、それを避けるべきである。純健康便益・純金銭便益を推計するにあたっては、関連する費用対効果の閾値とその根拠を含めるべきである。費用対効果平面は、どの介入が劣位であり、拡張劣位であるのかその程度を理解するのに役立つ。

項目23の例:主要な結果の要約[147]

Table Y
Table Z

項目 24. 不確実性の影響:結果に影響する分析上の判断,入力値,予測に関する不確実性について説明する. 該当すれば、割引率の選択,分析期間の選択に関する影響も報告する.

説明:不確実性は、適切な量的な幅によって説明すべきである。研究に含まれる場合、著者は、少なくとも、割引率と分析期間の選択の影響を常に報告すべきである。著者は、外挿方法など、構造的あるいは方法論的選択に関する不確実性の影響を説明するため、可能であればデータとともに図を使用することが推奨される。決定的分析が実施される場合は、トルネードダイアグラムを使用する。一方で、適切な場合には、確率的分析において、区別できるように各介入の点を描いた費用効果平面上の散布図と、費用対効果受容曲線を使用する。

項目24の例:不確実性の影響[134]

Figure Y:ベースケースの費用効果平面,増分費用効果,純便益分析. (A) 2つの比較される技術の費用と効果は、各群でサンプリングされた1000名分をプロットする. (B)人工知能 (AI) とAIなしを比較した増分費用と増分効果をプロットする. 各象限によって相対的な費用対効果が示される (例:右上:費用が高く、効果も高い、右下:費用が安く、効果は高い).挿入したクロス集計表:異なる象限にあるサンプルの割合. (C)支払者の支払意思閾値に応じて、各技術の費用対効果がよくなる確率をプロットした. 支払い意思額の範囲が0ユーロから100ユーロで動いても、さらにこの閾値を超えても大きな変化はなかった.

項目 25. 研究によって影響を受ける患者やその他の 人々の参画の影響:患者/サービス利用者,一般市民,コ ミュニティ,利害関係者の関与によって,研究の方法あ るいは結果にどのような違いをもたらしたか報告する.

説明:報告すべき主な点は、患者や一般市民、コミュニティ、利害関係者が関与することによって、研究にどのような違いや影響を及ぼしたかということである

[148,149]. なぜなら、このことが診療のためのエビデンスの基盤になるからである。研究プロセスにおいて、(研究の被験者ではなく)患者や介護者、支払者、一般市民、コミュニティを共同研究者として積極的に関与させた場合、著者はこの関与が研究にどのような違いをもたらしたかを報告するよう推奨される。違いには、スコープ、方法や結果、結果の解釈、研究プロセスの差が含まれる場合がある。一般市民や利害関係者の関与による違いや影響を報告することに加え、著者はGRIPP2 ガイダンスを用いてPPIEのより詳細な側面を報告することが望ましい[145].

項目 25 の例:研究によって影響を受ける患者やその他の人々の関与の影響[146]

[本] 研究は、市民参画(public involvement)が数学的・経済的モデリングにもたらすかもしれない違いを明らかにした。マクロレベルでは、状況のレビュー、関連性のレビュー、データの評価とモデル選択の正当化、トラブルシューティング、アウトカムの解釈とレビュー、意思決定、これらに一般市民が貢献することがわかった。ミクロレベルでは、モデリングプロセスの各段階に応じた具体的な種類の貢献を特定した。一般市民はより広い社会的観点で、モデルをその状況に適合させることに加えて、多様な意見を通じてその適用可能性、有用性、透明性を高め、その精査により信頼性、一貫性、継続的な開発を強化することにより、モデルの妥当性を高めた。

6. 考察

項目26. 研究結果、限界、一般化可能性、現在の知見: 主要な結果、限界、考慮できていない倫理あるいは公平 性に関する検討、これらが患者や政策、臨床にどのよう な影響を与えるか、

説明:考察は、結果のコンテクストを与え、読者が研究結果を解釈し、批判的にレビューするのを助ける。著者は、読みやすくするために小見出しを使用してもよい[150]。考察では、主要な結果と、これらが研究の結論をどのようにサポートするかを要約する。著者は不確実性の程度と主な種類を示すべきである。注目すべきサブグループや分配効果については、社会・経済的背景やバイオマーカーを用いて、どのサブグループが治療にアクセスできるべきかを判断するなど、倫理や公平性に関する考察とともに議論する[151,152]。また、研究結果を関連する意思決定のフレームワークや閾値と関連付けて、その地域や環境における意志決定に対して研究の適用可能性を示すことも重要である。

透明性と妥当性は、意思決定者が経済データを信頼できるようにするために不可欠である。研究の限界に関するセクションには、研究実施において用いた仮定や方法 論的選択の影響についての考察を含めるべきである。そ のような仮定と選択は、多くの種類の不確実性を生じさせる。モデルの妥当性検討において、不一致が生じることによる限界(あるいはバリデーションがなされないこと)についても考察すること[130,133].

患者や政策、診療に対する研究の潜在的な影響について考察し、研究が現在の知見に何をもたらすのかを議論することが重要である。この点に関して、考察の項では、研究結果をもとのdecision questionと関連させて、その結果が意思決定問題への読者の理解にどのように影響するかを説明すべきである。研究結果は、最新の文献を参照して考察し、過去の研究と異なる結果について考えられる説明を記載する。研究結果の一般化可能性(外的妥当性)とその他の状況への移転可能性についても考察すべきである。最後に、考察の項では、今後の研究の方向性を提示する。当該研究に関連する課題で、研究後にも未解決のままであるもの、研究の結果として課題がより明確になったものを提示する。

項目 26 の例:研究結果,限界,一般化可能性,現在の知見[153]

[例:限界]:「本解析には重要な限界がある. 第 一に,均一な人口混合(population mixing)を想定し ている. この仮定は [PCR (polymerase chain reaction)]検査のベネフィットを過大あるいは過小評価す る可能性があるが、観察データを反映できるように するため、我々は伝播乗数(transmission multiplier) を用いてモデルを補正した. 適切な場合, 検査のべ ネフィット (PCR感度, 検査コスト, 検査陰性後の 伝播減少) を保守的に推定できる値や仮定を選択し、 感度分析でこれらの値を大きく変動させた. 第二 に、これらの戦略の実行可能性に影響を及ぼしうる サプライチェーンの欠陥については取り上げていな い. 第三に、拡大検査から得られる可能性のあるい くつかの要因を除外した。ただし、それらは費用対 効果をさらに改善するものである. 例えば、[COVID (coronavirus disease 2019)] に関連した罹患率ある いは自己隔離に関連したメンタルヘルス問題による QOLの低下を回避すること, 学校閉鎖に関連した労 働力のギャップを予防すること, 経済的な購買を増 加させること、COVID発生率の低下によって経済活 動の再開を可能にすることなどである. また, 伝播 は疾患状態ごとに一定の日率で変化すると仮定した. 新たなデータから、感染性はウイルス獲得後早期に 最も高くなる可能性が示唆されている. もしそうで あれば、早期あるいは無症候性の感染症を診断する 検査戦略の方が、より価値が高いと考えられる. 最 後に、我々は接触の追跡をモデル化していない、接 触追跡は、時間とともに急増する流行のパッチワー クに対応するための重要なツールとなる可能性があ る. 」

7. その他の関連情報

項目 27.資金源:研究がどのように資金提供され、資金 提供者が研究の特定、デザイン、実施、分析の報告にお いてどのような役割を果たしたか.

説明:経済評価において、資金提供の関係性は、結果の方向と相関することが示されている[154-161]。著者は、当該研究における金銭的あるいは(非金銭的支援などを含む)その他の利害を有する組織や個人と、資金提供者との関係についてもすべて記述すべきである。資金援助あるいは非金銭的支援を受けなかった場合、著者はそのことを記載すべきである。

項目27の例:資金源[162]

「本試験は, [National Institute for Health Research (NIHR)] School for Primary Care Research (助成金参照番号: 117a) の支援を受けた. [著者は] NIHR Research Professorship (NIHR-RP-02-12-012) から資金提供を受けた. 試験運営委員会は資金提供者と試験依頼者 (ブリストル大学) を代表して独立した監督を行い, 独立データモニタリング委員会は安全性について監視した.」

項目 28. 利益相反: 学術誌やICMJE (医学雑誌編集者国際委員会) の規定に従って,著者の利益相反について報告する.

説明:著者は、自身の中立性に影響を及ぼしていると感じているか否かにかかわらず、読者が競合する利益であると考える可能性があることはすべて宣言すべきである。著者は、自分のバイアスを認識していない可能性がある。また、自分が中立である、あるいは複数の利益相反が互いをキャンセルすると信じており、これが潜在的な利益相反を明らかにしないことの正当化に用いられている可能性がある[163-166]。利益相反情報は、読者が結果の信頼性を解釈するのにさらに役立つ可能性がある。学術誌の方針がない場合、著者には標準的な利益相反フォームに記入するよう推奨する(例えばICMJEのフォーム[167]、http://www.icmje.org/conflicts-of-interest/)。少なくとも、著者は、公表前36ヵ月以内に存在する金銭的利害と研究に影響を及ぼしたと思われるその他の利害を宣言するべきである。

項目28の例:利益相反[162]

「すべての著者が潜在的な利益相反の開示に関するICMJEフォームを記入し、提出している。Dr. Thompsonは、診療現場におけるC反応性蛋白質の検査に関する研究を実施するためにAlere Inc.から資金提供を受けており、コンサルタント業務のためにRoche Molecular Diagnosticsから資金提供を受けていることを報告している。」

V. 考察

今回のCHEERSのアップデートが、医療経済評価の報告を特定し、作成し、解釈する必要がある人々にとって有用であることを願っている。2013年以降、利用可能な医療経済評価が増加し、複数の言語でCHEERSの利用が可能になったにもかかわらず、CHEERSがさらに広く、適切に使用されうる可能性がある徴候が依然として存在する。便宜的サンプリングによるCHEERSを引用した50件の論文のうち、CHEERSを適切に使用していたのはわずか42%(95%信頼区間28~56)であった[5]。この割合は他の主要な報告ガイドライン(CONSORT、PRISMA、動物実験:in vivo実験の報告 [ARRIVE])で観察された割合と同程度である。同研究では、CHEERSの不適切な使用が、その公表時よりも増加していることも明らかにしている。

本更新版の作成にあたっては、可能な限り広い範囲にCHEERSが適用できることを保証したいとも考えた. CBAには適用できないのではないかという過去の懸念は、以前のガイドラインが(CUAを含む)CEAを実施する人々に強く向けられていたことを考慮するなら、理解できるものである. これは、以前のCHEERSガイダンス作成の時点で、公表されたCBAの割合や影響が小さかったことに、部分的には起因している. にもかかわらず、CBAや分配CEAなど他の形態の経済評価が発展し、出版されていることと相まって、医療のベネフィットの幅広い評価がますます重要になっていることは明らかである. 医療経済評価は、健康介入の様々な範囲に適用が拡大されている. 改訂されたCHEERSがこれらの懸念に対応できていることを願っている.

また、最終的なチェックリストは、タスクフォースメ ンバー、PPIEアドバイザー、デルファイパネルメンバー、 関与する査読者の観点を反映している. デルファイ法の ような名目上のグループ手法は、グループの中で支配的 な専門家の不必要な影響を最小限に抑えることを目的と している. しかし、これらのプロセスのアウトプットは、 提示されている経験や観点と同程度に優れているだけで ある. 様々な専門分野への適用を試みているものの、健 康以外に影響を及ぼす介入(例:教育,環境,社会的ケア) に関して、CHEERSを適用することをさらに検討できる 可能性がある. 我々は、CHEERS 2022 の項目を拡張する、 あるいは特定の領域において明確化のための追加報告ガ イダンスを作成することを検討する人々に対して、1名以 上のCHEERSタスクフォースメンバーにフィードバック を提供する、あるいはメンバーと協力してこれらの領域 におけるCHEERSの拡張を開発することを推奨する.

更新されたガイダンスには、出版された医療経済評価の実施や報告における今後の発展を期待しているものがある。例えば、医療経済解析計画書の使用、モデルの共有、コミュニティ・患者・一般市民の参画などヘルスリサーチへの利害関係者の関与増加などである。デルファイパ

ネルの一部は、これらの領域が発展していっても、自分たちが作成した項目が正当化されるわけではないことを示唆した。しかし、タスクフォースは、個々の項目の作成を通じて、これらの発展に取り組むことで、それらの使用や発展に関する認識を高めることができると最終的に感じたところである。

医療における意思決定や医療費への関心をサポートするための情報を明確にする必要性が絶えず高まっていることを考慮すると、出版されている医療経済評価の役割がより重要になることが予想される。CHEERS 2022 と付随するリソースが最終的に報告(と意思決定)の質を向上させることを期待しているが、以前のCHEERSが報告の質に及ぼした影響は依然としてはっきりしない、評価のための公式な研究が進行中であり、結果は 2022 年中に得られる予定である[168]。その一方で、編集者と著者のためのより広範囲のツール・リソースの作成、より大規模な学術誌グループ全体の支持獲得、アウトリーチの取り組みの強化など、CHEERSの適切な使用を増やすための戦略に目を向けた。

また、研究者がCHEERS 2022 を他の言語に翻訳したいと考える可能性があることも理解している。このような場合、我々は適切な方法[56,169]と1名以上のタスクフォースメンバーとの協力により、CHEERSとの一貫性を確保することを推奨している。CHEERS 2022 のウェブページを定期的に参照し、どのように改善できるかフィードバックするよう、著者、査読者、及び編集者に勧めている。

VI. 結論

この報告書は、利用者が新しいCHEERS 2022 の 28項目 チェックリストを適切に使用できるよう支援することを 目的としている。CHEERS 2022 は主に、査読誌に経済評価を報告する研究者、出版物を評価する査読者・編集者 を対象としている。しかし、研究を計画する際には、報告要件を熟知していることが分析者にとって有用であると考えられる。また、意思決定における透明性が重視されるようになっていることを考慮すると、報告に関する ガイダンスが必要なHTA機関にとっても有用である可能性がある。

利益相反

日本人著者ら全員について、申告すべき利益相反はない.

補足(Appendix)URL

<u>Figure X, Figure Y, Table X, Table Y, Table Z;</u> https://www.niph.go.jp/journal/data/72-4/202372040009ap01.pdf

引用文献

- [1] Pitt C, Goodman C, Hanson K. Economic evaluation in global perspective: a bibliometric analysis of the recent literature. Health Econ. 2016;25(suppl 1):9-28.
- [2] Neumann PJ, Thorat T, Shi J, Saret CJ, Cohen JT. The changing face of the cost utility literature, 1990-2012. Value Health. 2015;18(2):271-277.
- [3] Panzer AD, Emerson JG, D'Cruz B, et al. Growth and capacity for cost-effectiveness analysis in Africa. Health Econ. 2020;29(8):945-954.
- [4] Husereau D, Drummond M, Petrou S, et al. Consolidated health economic evaluation reporting standards (CHEERS) explanation and elaboration: a report of the ISPOR health economic evaluation publication guidelines good reporting practices task force. Value Health. 2013;16(2):231-250.
- [5] Caulley L, Catalá-López F, Whelan J, et al. Reporting guidelines of health research studies are frequently used inappropriately. J Clin Epidemiol. 2020;122:87-94.
- [6] Emerson J, Panzer A, Cohen JT, et al. Adherence to the iDSI reference case among published cost-per-DALY averted studies. PLoS One. 2019;14(5):e0205633.
- [7] Economic Analysis of Health Care Technology. A report on principles. Task Force on Principles for Economic Analysis of Health Care Technology. Ann Intern Med. 1995;123(1):61-70.
- [8] Gold MR. Cost-effectiveness in health and medicine. Oxford, United Kingdom: Oxford University Press; 1996.
- [9] Drummond M, Jefferson TO. Guidelines for authors and peer reviewers of economic submissions to the BMJ. The BMJ Economic Evaluation Working Party. BMJ. 1996;313(7052):275-283.
- [10] Siegel JE, Weinstein MC, Russell LB, Gold MR. Recommendations for reporting cost-effectiveness analyses. Panel on cost-effectiveness in health and medicine. JAMA. 1996;276(16):1339-1341.
- [11] Nuijten MJ, Pronk MH, Brorens MJ, et al. Reporting format for economic evaluation: part II: focus on modelling studies. Pharmacoeconomics. 1998;14(3):259-268.
- [12] Vintzileos AM, Beazoglou T. Design, execution, interpretation, and reporting of economic evaluation studies in obstetrics. Am J Obstet Gynecol. 2004;191(4):1070-1076.
- [13] Drummond M, Manca A, Sculpher M. Increasing the generalizability of economic valuations: recommendations for the design, analysis, and reporting of studies. Int J Technol Assess Health Care. 2005;21(2):165-171.
- [14] Ramsey SD, Willke RJ, Glick H, et al. Cost-effectiveness analysis alongside clinical trials II - An ISPOR Good Research Practices Task Force report. Value Health. 2015;18(2):161-172.

- [15] Goetghebeur MM, Wagner M, Khoury H, Levitt RJ, Erickson LJ, Rindress D. Evidence and value: impact on decision making – the EVIDEM framework and potential applications. BMC Health Serv Res. 2008;8:270.
- [16] Davis JC, Robertson MC, Comans T, Scuffham PA. Guidelines for conducting and reporting economic evaluation of fall prevention strategies. Osteoporos Int. 2011;22(9):2449-2459.
- [17] Petrou S, Gray A. Economic evaluation alongside randomised controlled trials: design, conduct, analysis, and reporting. BMJ. 2011;342:d1548.
- [18] Petrou S, Gray A. Economic evaluation using decision analytical modelling: design, conduct, analysis, and reporting. BMJ. 2011;342:d1766.
- [19] Husereau D, Drummond M, Petrou S, et al. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. BJOG. 2013;120(6):765-770.
- [20] Husereau D, Drummond M, Petrou S, et al. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. BMC Med. 2013;11:80.
- [21] Husereau D, Drummond M, Petrou S, et al. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. BMJ. 2013;346:f1049.
- [22] Husereau D, Drummond M, Petrou S, et al. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. Clin Ther. 2013;35(4):356-363.
- [23] Husereau D, Drummond M, Petrou S, et al. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. Cost Eff Resour Alloc. 2013;11(1):6.
- [24] Husereau D, Drummond M, Petrou S, et al. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. Int J Technol Assess Health Care. 2013;29(2):117-122.
- [25] Husereau D, Drummond M, Petrou S, et al. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. J Med Econ. 2013;16(6):713-719.
- [26] Husereau D, Drummond M, Petrou S, et al. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. Eur J Health Econ. 2013;14(3):367-372.
- [27] Husereau D, Drummond M, Petrou S, et al. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. Pharmacoeconomics. 2013;31(5):361-367.
- [28] Husereau D, Drummond M, Petrou S, et al. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. Value Health. 2013;16(2):e1-e5.
- [29] Report submission. National Institute of Health Research. https://www.journalslibrary.nihr.ac.uk/information-for-authors/getting-started/report-submission.htm

- (accessed 2021-04-06)
- [30] Code of ethics for medical research publication principles for publication professionals. International Society for Medical Publication Professionals. https://www.ismpp.org/code-of-ethics-a#:w:text=The%202019%20 ISMPP%20Code%20of,work%20of%20medical%20publication%20professionals (accessed 2021-07-21)
- [31] Enhancing the QUAlity and Transparency Of health Research. The EQUATOR Network. https://www.equator-network.org/ (accessed 2021-04-09)
- [32] Moher D, Hopewell S, Schulz KF, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomized trials. BMJ. 2010;340:c869.
- [33] Vandenbroucke JP, von Elm E, Altman DG, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Ann Intern Med. 2007;147(8):W163-W194.
- [34] Page MJ, Moher D, Bossuyt PM, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372:n160.
- [35] Sanghera S, Frew E, Roberts T. Adapting the CHEERS statement for reporting cost–benefit analysis. Pharmacoeconomics. 2015;33(5):533-534.
- [36] Walker DG, Wilson RF, Sharma R, et al. Best practices for conducting economic evaluations in health care: a systematic review of quality assessment tools. Agency for Healthcare Research and Quality. http://www.ncbi. nlm.nih.gov/books/NBK114545/ (accessed 2021-07-12)
- [37] Jüni P, Witschi A, Bloch R, Egger M. The hazards of scoring the quality of clinical trials for meta-analysis. JAMA. 1999;282(11):1054-1060.
- [38] Sanders GD, Neumann PJ, Basu A, et al. Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: second panel on Cost-Effectiveness in Health and Medicine [published correction appears in JAMA. 2016;316(18):1924]. JAMA. 2016;316(10):1093-1103.
- [39] Guidelines for the economic evaluation of health technologies: Canada. CADTH. https://www.cadth.ca/about-cadth/how-we-do-it/methods-andguidelines/guidelines-for-the-economic-evaluation-of-health-technologiescanada (accessed 2021-04-06)
- [40] Practical considerations when critically assessing economic evaluations. Guidance document. European Network for Health Technology Assessment. https://eunethta.eu/wp-content/uploads/2020/03/EUnetH-TA-JA3WP6B2-5-Guidance-Critical-Assessment-EE_v1-0.pdf (accessed 2021-04-06)
- [41] Thorn J, Ridyard C, Hughes D, et al. Health econom-

- ics analysis plans: where are we now? Value Health. 2016;19(7):A397.
- [42] Dunlop WCN, Mason N, Kenworthy J, Akehurst RL. Benefits, challenges and potential strategies of open source health economic models. Pharmacoeconomics. 2017;35(1):125-128.
- [43] Jansen JP, Incerti D, Linthicum MT. Developing opensource models for the US health system: practical experiences and challenges to date with the opensource value project. Pharmacoeconomics. 2019;37(11):1313-1320.
- [44] Smith R, Schneider P. Making health economic models Shiny: a tutorial. Wellcome Open Res. 2020;5:69.
- [45] Open source models. ISPOR. https://www.ispor.org/ member-groups/specialinterest-groups/open-sourcemodels (accessed 2021-04-06)
- [46] Cohen JT, Neumann PJ, Wong JB. A call for opensource cost-effectiveness analysis. Ann Intern Med. 2017;167(6):432-433.
- [47] WHO guide for standardization of economic evaluations of immunization programmes. World Health Organization. https://www.who.int/immunization/documents/who_ivb 19.10/en/ (accessed 2021-04-06)
- [48] Mauskopf J, Standaert B, Connolly MP, et al. Economic analysis of vaccination programs: an ISPOR Good Practices for Outcomes Research Task Force report [published correction appears in Value Health. 2019;22(3):383] [published correction appears in Value Health. 2019;22(4):502]. Value Health. 2018;21(10):1133-1149.
- [49] Wilkinson T, Sculpher MJ, Claxton K, et al. The international decision support initiative reference case for economic evaluation: an aid to thought. Value Health. 2016;19(8):921-928.
- [50] Cookson R, Drummond M, Weatherly H. Explicit incorporation of equity considerations into economic evaluation of public health interventions. Health Econ Policy Law. 2009;4(Pt 2):231-245.
- [51] Cookson R, Griffin S, Norheim OF, Culyer AJ, Chalkidou K. Distributional cost-effectiveness analysis comes of age. Value Health. 2021;24(1):118-120.
- [52] Lorgelly PK. Patient and public involvement in health economics and outcomes research. Patient. 2021;14(4):379-380.
- [53] Ryan M, Moran PS, Harrington P, et al. Contribution of stakeholder engagement to the impact of a health technology assessment: an Irish case study. Int J Technol Assess Health Care. 2017;33(4):424-429.
- [54] Hawton A, Boddy K, Kandiyali R, Tatnell L, Gibson A, Goodwin E. Involving patients in health economics research: "the PACTS principles.". Patient. 2021;14(4):429-434.

- [55] Malone DC, Ramsey SD, Patrick DL, et al. Criteria and process for initiating and developing an ISPOR good practices task force report. Value Health. 2020;23(4):409-415.
- [56] Moher D, Schulz KF, Simera I, Altman DG. Guidance for developers of health research reporting guidelines. PLoS Med. 2010;7(2):e1000217.
- [57] Drummond M. Methods for the Economic Evaluation of Health Care Programmes. 4th ed. Oxford, United Kingdom: Oxford University Press; 2015.
- [58] Sullivan SD, Mauskopf JA, Augustovski F, et al. Budget impact analysis-principles of good practice: report of the ISPOR 2012 Budget Impact Analysis Good Practice II Task Force. Value Health. 2014;17(1):5-14.
- [59] Crown W, Buyukkaramikli N, Thokala P, et al. Constrained optimization methods in health services research an introduction: report 1 of the ISPOR Optimization Methods Emerging Good Practices Task Force. Value Health. 2017;20(3):310-319.
- [60] Bond K, Stiffell R, Ollendorf DA. Principles for deliberative processes in health technology assessment [published online August 4, 2020]. Int J Technol Assess Health Care. https://doi.org/10.1017/S0266462320000550 (accessed 2021-01-01)
- [61] Consolidated health economic evaluation reporting standards (CHEERS) II. ISPOR. https://www.ispor.org/member-groups/task-forces/consolidatedhealth-economic-evaluation-reporting-standards-(cheers)-2 (accessed 2021-08-13)
- [62] Altman DG, Simera I. A history of the evolution of guidelines for reporting medical research: the long road to the EQUATOR Network. J R Soc Med. 2016;109(2):67-77.
- [63] Ware M, Mabe M. The STM report: an overview of scientific and scholarly journal publishing. International Association of Scientific, Technical and Medical Publishers. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1008&context=scholcom (accessed 2021-07-21)
- [64] Paisley S. Classification of evidence in decision-analytic models of cost-effectiveness: a content analysis of published reports. Int J Technol Assess Health Care. 2010;26(4):458-462.
- [65] Li J, Fairhurst C, Peckham E, et al. Cost-effectiveness of a specialist smoking cessation package compared with standard smoking cessation services for people with severe mental illness in England: a trial-based economic evaluation from the SCIMITAR1 study. Addiction. 2020;115(11):2113-2122.
- [66] Elliott J, McCoy B, Clifford T, Potter BK, Wells GA, Coyle D. Economic evaluation of cannabinoid oil for Dravet syndrome: a cost-utility analysis. Pharmacoeconomics. 2020;38(9):971-980.

- [67] Zeevat F, Crépey P, Dolk FCK, Postma AJ, Breeveld-Dwarkasing VNA, Postma MJ. Cost-effectiveness of quadrivalent versus trivalent influenza vaccination in the Dutch National Influenza Prevention Program. Value Health. 2021;24(1):3-10.
- [68] Dritsaki M, Gray A, Petrou S, Dutton S, Lamb SE, Thorn JC. Current UK practices on health economics analysis plans (HEAPs): are we using heaps of them? Pharmacoeconomics. 2018;36(2):253-257.
- [69] Orsini LS, Monz B, Mullins CD, et al. Improving transparency to build trust in real-world secondary data studies for hypothesis testing-Why, what, and how: recommendations and a road map from the real-world evidence transparency initiative. Pharmacoepidemiol Drug Saf. 2020;29(11):1504-1513.
- [70] Thorn JC, Davies CF, Brookes ST, et al. Content of Health Economics Analysis Plans (HEAPs) for trial-based economic evaluations: expert Delphi consensus survey. Value Health. 2021;24(4):539-547.
- [71] Chalmers JR, Wojnarowska F, Kirtschig G, et al. A randomised controlled trial to compare the safety, effectiveness and cost-effectiveness of Doxycycline (200 Mg/Day) with that of oral Prednisolone (0.5 Mg/Kg/Day) for initial treatment of bullous pemphigoid: the bullous pemphigoid steroids and tetracyclines (BLISTER) trial. Health Technol Assess. 2017;21(10):1-90.
- [72] Assmann SF, Pocock SJ, Enos LE, Kasten LE. Subgroup analysis and other (mis) uses of baseline data in clinical trials. Lancet. 2000;355(9209):1064-1069.
- [73] Pocock SJ, Hughes MD, Lee RJ. Statistical problems in the reporting of clinical trials. A survey of three medical journals. N Engl J Med. 1987;317(7):426-432.
- [74] Hernández AV, Boersma E, Murray GD, Habbema JD, Steyerberg EW. Subgroup analyses in therapeutic cardiovascular clinical trials: are most of them misleading? Am Heart J. 2006;151(2):257-264.
- [75] Gabler NB, Duan N, Liao D, Elmore JG, Ganiats TG, Kravitz RL. Dealing with heterogeneity of treatment effects: is the literature up to the challenge? Trials. 2009;10:43.
- [76] Lagakos SW. The challenge of subgroup analyses—reporting without distorting [published correction appears in N Engl J Med. 2006;355(5):533]. N Engl J Med. 2006;354(16):1667-1669.
- [77] Brookes ST, Whitley E, Peters TJ, Mulheran PA, Egger M, Davey Smith G. Subgroup analyses in randomised controlled trials: quantifying the risks of false-positives and false-negatives. Health Technol Assess. 2001;5(33):1-56.
- [78] Sun X, Briel M, Walter SD, Guyatt GH. Is a subgroup effect believable? Updating criteria to evaluate the credi-

- bility of subgroup analyses. BMJ. 2010;340:c117.
- [79] Heart Protection Study Collaborative, Mihaylova B, Briggs A, et al. Lifetime cost-effectiveness of simvastatin in a range of risk groups and age groups derived from a randomised trial of 20,536 people. BMJ. 2006;333(7579):1145.
- [80] Augustovski F, Chaparro M, Palacios A, et al. Cost-effectiveness of a comprehensive approach for hypertension control in low-income settings in Argentina: trial-based analysis of the hypertension control program in Argentina. Value Health. 2018;21(12):1357-1364.
- [81] Hoffmann T, Glasziou P, Boutron I, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ. 2014;348:g1687.
- [82] Möhler R, Köpke S, Meyer G. Criteria for reporting the development and evaluation of complex interventions in healthcare: revised guideline (CRe-DECI 2). Trials. 2015;16:204.
- [83] Tam-Tham H, Clement F, Hemmelgarn BR, et al. A cost analysis and cost-utility analysis of a community pharmacist-led intervention on reducing cardiovascular risk: the Alberta Vascular Risk Reduction Community Pharmacy Project (RxEACH). Value Health. 2019;22(10):1128-1136.
- [84] Kim DD, Silver MC, Kunst N, Cohen JT, Ollendorf DA, Neumann PJ. Perspective and costing in cost-effectiveness analysis, 1974-2018 [published correction appears in Pharmacoeconomics. 2020;38(12):1377]. Pharmacoeconomics. 2020;38(10):1135-1145.
- [85] Kremer IEH, Hiligsmann M, Carlson J, et al. Exploring the cost effectiveness of shared decision making for choosing between disease-modifying drugs for relapsing-remitting multiple sclerosis in The Netherlands: a state transition model. Med Decis Making. 2020;40(8):1003-1019.
- [86] Kim DD, Wilkinson CL, Pope EF, Chambers JD, Cohen JT, Neumann PJ. The influence of time horizon on results of cost-effectiveness analyses. Expert Rev Pharmacoecon Outcomes Res. 2017;17(6):615-623.
- [87] Polly DW, Larson AN, Samdani AF, et al. Cost-utility analysis of anterior vertebral body tethering versus spinal fusion in idiopathic scoliosis from a US integrated healthcare delivery system perspective. Clinicoecon Outcomes Res. 2021;13:175-190.
- [88] O'Mahony JF, Newall AT, van Rosmalen J. Dealing with time in health economic evaluation: methodological issues and recommendations for practice. Pharmacoeconomics. 2015;33(12):1255-1268.
- [89] Datta S, Pink J, Medley GF, et al. Assessing the cost-effectiveness of HPV vaccination strategies for

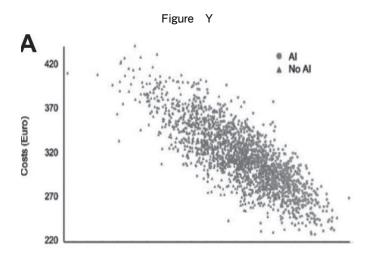
- adolescent girls and boys in the UK. BMC Infect Dis. 2019;19(1):552.
- [90] Mattingly 2nd TJ, Slejko JF, Onukwugha E, Perfetto EM, Kottilil S, Mullins CD. Value in hepatitis C virus treatment: a patient-centered cost-effectiveness analysis. Pharmacoeconomics. 2020;38(2):233-242.
- [91] Benchimol EI, Smeeth L, Guttmann A, et al. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) statement. PLoS Med. 2015;12(10):e1001885.
- [92] Ogrinc G, Armstrong GE, Dolansky MA, Singh MK, Davies L. SQUIRE-EDU (Standards for QUality Improvement Reporting Excellence in Education): publication guidelines for educational improvement. Acad Med. 2019;94(10):1461-1470.
- [93] Bossuyt PM, Reitsma JB, Bruns DE, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ. 2015;351:h5527.
- [94] Vandenbroucke JP, von Elm E, Altman DG, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. PLoS Med. 2007;4(10):e297.
- [95] Hoaglin DC, Hawkins N, Jansen JP, et al. Conducting indirect-treatment comparison and network-meta-analysis studies: report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: part 2. Value Health. 2011;14(4):429-437.
- [96] Stewart LA, Clarke M, Rovers M, et al. Preferred reporting items for systematic review and meta-analyses of individual participant data: the PRISMAIPD Statement. JAMA. 2015;313(16):1657-1665.
- [97] Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162(11):777-784.
- [98] Caro JJ, Briggs AH, Siebert U, Kuntz KM. IS-POR-SMDM Modeling Good Research Practices Task Force. Modeling good research practices—overview: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force—1. Value Health. 2012;15(6):796-803
- [99] Salameh JP, Bossuyt PM, McGrath TA, et al. Preferred reporting items for systematic review and meta-analysis of diagnostic test accuracy studies (PRIS-MA-DTA): explanation, elaboration, and checklist. BMJ. 2020;370:m2632.
- [100] Extending the QALY: about the project. The University of Sheffield. https://scharr.dept.shef.ac.uk/e-qaly/aboutthe-project/ (accessed 2021-05-20)
- [101] Steinbeisser K, Schwarzkopf L, Graessel E, Seidl H.

- Cost-effectiveness of a non-pharmacological treatment vs. "care as usual" in day care centers for community-dwelling older people with cognitive impairment: results from the German randomized controlled DeTa-MAKS-trial. Eur J Health Econ. 2020;21(6):825-844.
- [102] Barker AK, Scaria E, Safdar N, Alagoz O. Evaluation of the cost-effectiveness of infection control strategies to reduce hospital-onset Clostridioides difficile infection. JAMA Netw Open. 2020;3(8):e2012522.
- [103] Neumann PJ, Goldie SJ, Weinstein MC. Preference-based measures in economic evaluation in health care. Annu Rev Public Health. 2000;21(1):587-611.
- [104] Menegaki AN, Olsen SB, Tsagarakis KP. Towards a common standard A reporting checklist for web-based stated preference valuation surveys and a critique for mode surveys. J Choice Modell. 2016;18(C):18-50.
- [105] Smith RD, Sach TH. Contingent valuation: what needs to be done? Health Econ Policy Law. 2010;5(Pt 1):91-111.
- [106] Bridges JF, Hauber AB, Marshall D, et al. Conjoint analysis applications in health a checklist: a report of the ISPOR Good Research Practices for Conjoint Analysis Task Force. Value Health. 2011;14(4):403-413.
- [107] Hauber AB, González JM, Groothuis-Oudshoorn CG, et al. Statistical methods for the analysis of discrete choice experiments: a report of the ISPOR conjoint analysis good research practices task force. Value Health. 2016;19(4):300-315.
- [108] Stalmeier PF, Goldstein MK, Holmes AM, et al. What should be reported in a methods section on utility assessment? Med Decis Making. 2001;21(3):200-207.
- [109] Petrou S, Rivero-Arias O, Dakin H, et al. The MAPS reporting statement for studies mapping onto generic preference-based outcome measures: explanation and elaboration. Pharmacoeconomics. 2015;33(10):993-1011.
- [110] Evans MF, Taylor LO. Using revealed preference methods to estimate the value of reduced mortality risk: best practice recommendations for the hedonic wage model [published online September 29, 2020]. Rev Environ Econ Policy. https://doi.org/10.1093/reep/reaa006 (accessed 2021-01-01)
- [111] Coast J, Kinghorn P, Mitchell P. The development of capability measures in health economics: opportunities, challenges and progress. Patient. 2015;8(2):119-126.
- [112] Malley JN, Towers AM, Netten AP, Brazier JE, Forder JE, Flynn T. An assessment of the construct validity of the ASCOT measure of social care-related quality of life with older people. Health Qual Life Outcomes. 2012;10:21.
- [113] Xie F, Pickard AS, Krabbe PF, et al. A checklist for reporting valuation studies of Multi-Attribute Utility-Based Instruments (CREATE). Pharmacoeconomics. 2015;33(8):867-877.

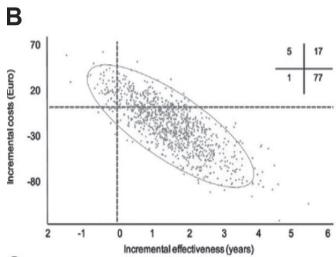
- [114] Tarricone R. Cost-of-illness analysis. What room in health economics? Health Policy. 2006;77(1):51-63.
- [115] Brazier J, Ara R, Azzabi I, et al. Identification, review, and use of health state utilities in cost-effectiveness models: an ISPOR Good Practices for Outcomes Research Task Force Report. Value Health. 2019;22(3):267-275.
- [116] Park M, Jit M, Wu JT. Cost-benefit analysis of vaccination: a comparative analysis of eight approaches for valuing changes to mortality and morbidity risks. BMC Med. 2018;16(1):139.
- [117] Verberne DPJ, van Mastrigt GAPG, Ponds RWHM, van Heugten CM, Kroese MEAL. Economic evaluation of nurse-led stroke aftercare addressing long-term psychosocial outcome: a comparison to care-as-usual. BMJ Open. 2021;11(2):e039201.
- [118] Spacírová Z, Epstein D, García-Mochón L, Rovira J, Olry de Labry Lima A, Espín J. A general framework for classifying costing methods for economic evaluation of health care [published correction appears in Eur J Health Econ. 2021;22(5):847]. Eur J Health Econ. 2020;21(4):529-542.
- [119] Xu X, Lazar CM, Ruger JP. Micro-costing in health and medicine: a critical appraisal. Health Econ Rev. 2021;11(1):1.
- [120] Hay JW, Smeeding J, Carroll NV, et al. Good research practices for measuring drug costs in cost effectiveness analyses: issues and recommendations: the ISPOR Drug Cost Task Force report–Part I. Value Health. 2010;13(1):3-7.
- [121] Mason JM, Chalmers JR, Godec T, et al. Doxycycline compared with prednisolone therapy for patients with bullous pemphigoid: cost-effectiveness analysis of the BLISTER trial. Br J Dermatol. 2018;178(2):415-423.
- [122] Shemilt I, Thomas J, Morciano M. A web-based tool for adjusting costs to a specific target currency and price year. Evidence and Policy. 2010;6(1):51-59.
- [123] Drummond M, Barbieri M, Cook J, et al. Transferability of economic evaluations across jurisdictions: ISPOR Good Research Practices Task Force report. Value Health. 2009;12(4):409-418.
- [124] Marx FM, Cohen T, Menzies NA, Salomon JA, Theron G, Yaesoubi R. Cost-effectiveness of post-treatment follow-up examinations and secondary prevention of tuberculosis in a high-incidence setting: a model-based analysis. Lancet Glob Health. 2020;8(9):e1223-e1233.
- [125] Brennan A, Chick SE, Davies R. A taxonomy of model structures for economic evaluation of health technologies. Health Econ. 2006;15(12):1295-1310.
- [126] Stahl JE. Modelling methods for pharmacoeconomics and health technology assessment: an overview and guide. Pharmacoeconomics. 2008;26(2):131-148.
- [127] Dahabreh IJ, Trikalinos TA, Balk EM, Wong JB. Recom-

- mendations for the conduct and reporting of modeling and simulation studies in health technology assessment. Ann Intern Med. 2016;165(8):575-581.
- [128] Sculpher M, Fenwick E, Claxton K. Assessing quality in decision analytic cost-effectiveness models. A suggested framework and example of application. Pharmacoeconomics. 2000;17(5):461-477.
- [129] Jo Y, Kagujje M, Johnson K, et al. Costs and cost-effectiveness of a comprehensive tuberculosis case finding strategy in Zambia. PLoS One. 2021;16(9):e0256531.
- [130] Eddy DM, Hollingworth W, Caro JJ, et al. Model transparency and validation: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force–7. Value Health. 2012;15(6):843-850.
- [131] Stout NK, Knudsen AB, Kong CY, McMahon PM, Gazelle GS. Calibration methods used in cancer simulation models and suggested reporting guidelines. Pharmacoeconomics. 2009;27(7):533-545.
- [132] Eddy DM, Hollingworth W, Caro JJ, et al. Model transparency and validation: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force–7. Med Decis Making. 2012;32(5):733-743.
- [133] Vemer P, Corro Ramos I, van Voorn Ga, Al MJ, Feenstra TL. AdViSHE: a validation-assessment tool of health-economic models for decision makers and model users. Pharmacoeconomics. 2016;34(4):349-361.
- [134] Griffin E, Hyde C, Long L, et al. Lung cancer screening by low-dose computed tomography: a cost-effectiveness analysis of alternative programmes in the UK using a newly developed natural history-based economic model. Diagn Progn Res. 2020;4(1):20.
- [135] Arifin SMN, Zimmer C, Trotter C, et al. Cost-effectiveness of alternative uses of polyvalent meningococcal vaccines in Niger: an agent-based transmission modeling study. Med Decis Making. 2019;39(5):553-567.
- [136] Heart Protection Study Collaborative Group. Statin cost-effectiveness in the United States for people at different vascular risk levels. Circ Cardiovasc Qual Outcomes. 2009;2(2):65-72.
- [137] Cookson R, Griffin S, Norheim OF, Culyer AJ, eds. Distributional cost-effectiveness analysis: Quantifying equity impacts and trade-offs. Oxford, United Kingdom: Oxford University Press; 2020.
- [138] Bobinac A, van Exel NJ, Rutten FF, Brouwer WB. Inquiry into the relationship between equity weights and the value of the QALY. Value Health. 2012;15(8):1119-1126.
- [139] Norheim OF, Emanuel EJ, Millum J, eds. Global health priority-setting: Beyond cost-effectiveness. 1st ed. Oxford, United Kingdom: Oxford University Press; 2019.
- [140] Yang F, Angus C, Duarte A, Gillespie D, Walker S, Griffin S. Impact of socioeconomic differences on distribu-

- tional cost-effectiveness analysis. Med Decis Making. 2020;40(5):606-618.
- [141] Briggs AH, Weinstein MC, Fenwick EA, et al. Model parameter estimation and uncertainty: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force–6. Value Health. 2012;15(6):835-842.
- [142] Staniszewska S, Denegri S, Matthews R, Minogue V. Reviewing progress in public involvement in NIHR research: developing and implementing a new vision for the future. BMJ Open. 2018;8(7):e017124.
- [143] Xie RZ, Malik ED, Linthicum MT, Bright JL. Putting stakeholder engagement at the Center of Health Economic Modeling for Health Technology Assessment in The United States. PharmacoEconomics. 2021;39(6):631-638.
- [144] van Voorn GA, Vemer P, Hamerlijnck D, et al. The missing stakeholder group: why patients should be involved in health economic modelling. Appl Health Econ Health Policy. 2016;14(2):129-133.
- [145] Staniszewska S, Brett J, Simera I, et al. GRIPP2 reporting checklists: tools to improve reporting of patient and public involvement in research. Res Involv Engagem. 2017;3:13.
- [146] Staniszewska S, Hill EM, Grant R, et al. Developing a framework for public involvement in mathematical and economic modelling: bringing new dynamism to vaccination policy recommendations. Patient. 2021;14(4):435-445.
- [147] Li B, Cairns JA, Johnson RJ, et al. Equity-efficiency tradeoffs associated with alternative approaches to deceased donor kidney allocation: a patient-level simulation. Transplantation. 2020;104(4):795-803.
- [148] Brett J, Staniszewska S, Mockford C, et al. A systematic review of the impact of patient and public involvement on service users, researchers and communities. Patient. 2014;7(4):387-395.
- [149] Brett J, Staniszewska S, Mockford C, et al. Mapping the impact of patient and public involvement on health and social care research: a systematic review. Health Expect. 2014;17(5):637-650.
- [150] Docherty M, Smith R. The case for structuring the discussion of scientific papers. BMJ. 1999;318(7193):1224-1225.
- [151] Sculpher M. Subgroups and heterogeneity in cost-effectiveness analysis. Pharmacoeconomics. 2008;26(9):799-806.
- [152] Love-Koh J, Peel A, Rejon-Parrilla JC, et al. The future of precision medicine: potential impacts for health technology assessment. Pharmacoeconomics. 2018;36(12):1439-1451.
- [153] Neilan AM, Losina E, Bangs AC, et al. Clinical impact,


- costs, and cost-effectiveness of expanded Severe Acute Respiratory Syndrome Coronavirus 2 testing in Massachusetts. Clin Infect Dis. 2021;73(9):e2908-e2917.
- [154] Baker CB, Johnsrud MT, Crismon ML, Rosenheck RA, Woods SW. Quantitative analysis of sponsorship bias in economic studies of antidepressants. Br J Psychiatry. 2003;183:498-506.
- [155] Bell CM, Urbach DR, Ray JG, et al. Bias in published cost effectiveness studies: systematic review. BMJ. 2006;332(7543):699-703.
- [156] Friedberg M, Saffran B, Stinson TJ, Nelson W, Bennett CL. Evaluation of conflict of interest in economic analyses of new drugs used in oncology. JAMA. 1999;282(15):1453-1457.
- [157] Garattini L, Koleva D, Casadei G. Modeling in pharmacoeconomic studies: funding sources and outcomes. Int J Technol Assess Health Care. 2010;26(3):330-333.
- [158] Hendrix N, Kim DD, Patel KS, Devine B. Differences in the selection of health state utility values by sponsorship in published cost-effectiveness analyses. Med Decis Making. 2021;41(3):366-372.
- [159] Catalá-López F, Ridao M. Potencial sesgo de patrocinio en los análisis costeefectividad de intervenciones sanitarias: un análisis transversal [Potential sponsorship bias in cost-effectiveness analyses of healthcare interventions: a cross-sectional analysis]. Aten Primaria. 2017;49(6):335-342. (in Spanish)
- [160] Al-Badriyeh D, Alameri M, Al-Okka R. Cost-effectiveness research in cancer therapy: a systematic review of literature trends, methods and the influence of funding. BMJ Open. 2017;7(1):e012648.
- [161] Catalá-López F, Sanfélix-Gimeno G, Ridao M, Peiró S. When are statins cost-effective in cardiovascular prevention? A systematic review of sponsorship bias and con-

- clusions in economic evaluations of statins. PLoS One. 2013;8(7):e69462.
- [162] Moure-Fernandez A, Hollinghurst S, Carroll FE, et al. Economic evaluation of the OSAC randomised controlled trial: oral corticosteroids for non-asthmatic adults with acute lower respiratory tract infection in primary care. BMJ Open. 2020;10(2):e033567.
- [163] Jang S, Kwang CY, Majhail NS. Financial conflicts of interest are common and frequently influence conclusions of economic analyses presented at the American Society of Hematology annual meeting. Blood. 2009;114(22):810.
- [164] Jang S, Chae YK, Haddad T, Majhail NS. Conflict of interest in economic analyses of aromatase inhibitors in breast cancer: a systematic review. Breast Cancer Res Treat. 2010;121(2):273-279.
- [165] Valachis A, Polyzos NP, Nearchou A, Lind P, Mauri D. Financial relationships in economic analyses of targeted therapies in oncology. J Clin Oncol. 2012;30(12):1316-1320.
- [166] Polyzos NP, Valachis A, Mauri D, Ioannidis JP. Industry involvement and baseline assumptions of cost-effectiveness analyses: diagnostic accuracy of the Papanicolaou test. CMAJ. 2011;183(6):E337-E343.
- [167] Drazen JM, Van Der Weyden MB, Sahni P, et al. Uniform format for disclosure of competing interests in ICMJE journals. CMAJ. 2009;181(9):565.
- [168] Catalá-López F, Caulley L, Ridao M, et al. Reproducible research practices, openness and transparency in health economic evaluations: study protocol for a cross-sectional comparative analysis. BMJ Open. 2020;10(2):e034463.
- [169] Sperber AD. Translation and validation of study instruments for cross-cultural research. Gastroenterology. 2004;126(1 suppl 1):S124-S128.


Figure X

ACF: Active Case Finding (能動検診), HC: healthcare (ヘルスケア), HIV/TB: human immunodeficiency virus/tuberculosis (HIV/結核), ICER: incremental cost-effectiveness ratio (増分費用効果比)

Effectiveness (years)

Table X

Proposition of gatients with pCR after neodjuvant treatment, % IT 16.8 β (α = 15.00; β = 88.00) THP 45.8 β (α = 40.00; β = 88.00) THP 45.8 β (α = 40.00; β = 88.00) TGIP 52.56 β (α = 115.00; β = 104.00) Effect of adjuvant treatment 52.56 β (α = 115.00; β = 104.00) Effect of adjuvant treatment 75.00; β = 104.00 Effect of adjuvant treatment position 15.9 β (α = 115.00; β = 605.00) TGIP Solidari (recurrence) probability with H with residual disease (reference group) . $\frac{4}{3}$ α = 10.00; α α	Input parameters	Value	Probability distributiona	
$ \begin{aligned} & \text{FP} & \text{16.8} & \beta & (a = 18,000, \beta = 880,00) \\ & \text{DDACTTP} & 45.8 & \beta & (a = 470,00, \beta = 880,00) \\ & \text{DDACTTP} & 56.5 & \beta & (a = 78,000, \beta = 60,00) \\ & \text{Effect of adjavant treatment} \\ & \text{Datant recurrence} \\ & \text{Datant recurrence} \\ & \text{Sy distant recurrence} \\ & \text{Poly adjavant treatment} \\ & \text{Datant recurrence} \\ & \text{Poly adjavant treatment} \\ & The Minimization of the model of the state of the sta$	_ * *		<u> </u>	
THP		16.8	β (α =18.00: β =89.00)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	THP			
TCHP S2.5b β (α = 115.00; β = 104.00) Bistort of adjuvant treatment Distant recurrence 3-y distant recurrence 3-y distant recurrence probability with H with residual disease (reference group) 3-y distant recurrence probability with H with residual disease (reference group) 15.90 BY (α = 118.00; β = 625.00) BY (α = 118.00; β = 625.00) BY (α = 118.00; β = 625.00) BY (α = 100.00; β = 625.00) BY (α = 100.00; β = 625.00) BY (α = 100.00; β = 600. Log normal (β = -0.5); α = 0.00) BY (α = 100.00; β = 1				
Effect of adjuvant treatment 15.9 β (α = 118.00; β = 625.00) Distant recurrence probability with H with residual disease (reference group) . % 15.9 β (α = 118.00; β = 625.00) R by adjuvant treatment THMI with residual disease 0.60 Log normal (μ = -0.51; σ = 0.09) DDAC/THF followed by T-DMI with residual disease 0.40° Truncated normal (α = -0.18; b=0.00) e DDAC followed by T-DMI with residual disease 0.40° Truncated normal (α = -0.18; b=0.00) e Local recurrence 3.1 Log normal (μ = 1.70; σ = 0.18) 3-y locoragional recurrence probability for H with residual disease (reference group) . % 4.6 β (α = 34.00; β = 6709.00) RB by adjuvant treatment 2.24° Log normal (μ = -1.43; σ = 0.11) All treatments with residual disease other than H 0.24° Log normal (μ = -1.43; σ = 0.11) H with pCR 0.29° Log normal (μ = -1.43; σ = 0.11) H with pCR 0.29° Log normal (μ = -1.43; σ = 0.11) Subsequent distant recurrence after initial local recurrence 18.9° β (α = 13.00; β = 56.00) Survival and normality parameters Mediant recurrence after initial local recurrence 18.9° β		· ·		
Distant recurrence constability with H with residual disease (reference group) , $^{\circ}$ % (a = 118.00; β = 625.00) $^{\circ}$ group) , $^{\circ}$ RR by adjurrant treatment TeIMI with residual disease 0.0.60 Log normal (μ = -0.51; σ = 0.09) DDAC followed by TDMI with residual disease 0.0.60 Truncated normal (a = -0.18; b = -0.60) e DDAC followed by TDMI with residual disease 0.0.60 Truncated normal (a = -0.18; b = -0.60) e H with pCR 0.18 Log normal (μ = 1.70; σ = 0.18 Local recurrence 2.3y locoregional recurrence probability for H with residual disease (reference group) .% RR by adjuvant treatment All treatments with residual disease other than H 0.2f Log normal (μ = 1.43; σ = 0.11) H with pCR Log normal (μ = 1.43; σ = 0.11) H with pCR Log normal (μ = 1.43; σ = 0.11) Subsequent distant recurrence after initial local recurrence 10-19 probability. In the sidual disease other than H 0.2f Log normal (μ = 1.43; σ = 0.11) Subsequent distant recurrence after initial local recurrence 38 Normal (38.00 4.08) With a cutte myleridid recurrence 38 Normal (38.00 4.08) With a cutte myleridid recurrence 38 Normal (38.00 4.08) With a cutte myleridid recurrence 38 Normal (38.00 4.08) With a cutte myleridid recurrence 38 Normal (38.00 4.08) With a cutte myleridid recurrence 39 Normal (38.00 4.08) With a cutte myleridid recurrence 39 Normal (38.00 4.08) With a cutte myleridid recurrence 39 Normal (38.00 4.08) Normal (38.00		02.00	ρ (α –110.00, ρ –101.00)	
$3 \phi \text{ distant recurrence probability with H with residual disease (reference group) }, $$$ $				
group) ,% RR by adjunant treatment T.DMI with residual disease 0.60 Log normal (μ = 0.51; σ = 0.09) DDAC followed by T-DMI with residual disease 0.50 Truncated normal (α =0.18; β =0.680) e DDAC followed by T-DMI with residual disease 0.40° Truncated normal (α =0.18; β =0.680) e DDAC followed by T-DMI with residual disease 0.40° Truncated normal (α =0.18; β =0.680) e H with pCR 0.18 Log normal (μ = 1.77; σ = 0.18) Local recurrence 23-y Locoregional recurrence probability for H with residual disease (reference group) ,% RR by adjuvant treatment All treatments with residual disease other than H 0.24 Log normal (μ = 1.43; σ = 0.11) H with pCR 0.24° Log normal (μ = 1.43; σ = 0.11) H with pCR 0.24° Log normal (μ = 1.43; σ = 0.11) H with pCR 0.24° Log normal (μ = 1.43; σ = 0.11) H with pCR 0.24° Log normal (μ = 1.43; σ = 0.11) H with pCR 0.24° Log normal (μ = 1.43; σ = 0.11) H with pCR 0.24° Log normal (μ = 1.43; σ = 0.11) H with pCR 0.24° Log normal (μ = 1.43; σ = 0.11) H with pCR 0.24° Log normal (μ = 1.43; σ = 0.11) H with pCR 0.24° Log normal (μ = 1.43; σ = 0.11) H with pCR 0.24° Log normal (μ = 1.43; σ = 0.11) H with pCR 0.24° Log normal (μ = 1.43; σ = 0.11) H with pCR 0.24° Log normal (μ = 0.14; σ = 0.11) H with pCR 0.24° Log normal (μ = 0.143; σ = 0.11) H with pCR 0.24° Log normal (μ = 0.143; σ = 0.11) H with pCR 0.24° Log normal (μ = 0.130; ρ = 56.00) Survival and mortality parameters 0.38° Normal (38.00; 4.08) Normal		15.0	ρ (α -118 00, ρ -625 00)	
RR by adjuvant treatment T-DMI with residual disease 0.60 Lag normal ($\mu = 0.51$; $\sigma = 0.09$) DDACTHP followed by T-DMI with residual disease 0.62' Truncated normal ($a = 0.18$; $b = 0.60$) e DDAC followed by T-DMI with residual disease 0.10' Truncated normal ($a = 0.18$; $b = 0.60$) e DDAC followed by T-DMI with residual disease 0.10' Truncated normal ($a = 0.18$; $b = 0.60$) e H with pCR 3.7 locoregional recurrence probability for H with residual disease (reference group) .% RR by adjuvant treatment All treatments with residual disease other than H 0.24' Lag normal ($\mu = 1.43$; $\sigma = 0.01$) H with pCR 2.24' Lag normal ($\mu = 1.43$; $\sigma = 0.01$) H with pCR 3.8 β β ($\alpha = 13.00$; $\beta = 56.00$) Survival and mortality parameters Median survival, no With distant recurrence 3.8 Normal (38.00; 4.08) With distant recurrence 3.8 Normal (38.00; 4.08) With distant recurrence 3.8 Normal (8.00; 2.00) Matuality recurrence-fee state Annual risk of death due to CHE % 1.2.70% Annual risk of death due to CHE % 1.2.70% Annual risk of death due to CHE % 1.2.70% Action myeloid leukemia 1.2.70 probability in patients with non-AC chemotherapy (reference group) .% RR for AC chemothrepy 1.26 Lag normal ($\mu = 0.23$; $\sigma = 0.08$) Action myeloid leukemia 1.2.70 probability in patients with no chemotherapy (reference group) .% RR for AC chemothrepy 1.26 Lag normal ($\mu = 0.23$; $\sigma = 0.08$) Action myeloid leukemia 1.2.70 probability in patients with no chemotherapy (reference group) .% RR for AC chemothrepy 1.26 Lag normal ($\mu = 0.03$; $\beta = 19750560$) RR for AC chemothrepy 1.26 Lag normal ($\mu = 0.03$; $\beta = 0.35$) RR for AC chemothrepy 1.27 All treatments regimen; HP 1.28 1.29 1.		13.9	ρ (α =118.00; ρ =023.00)	
T-DMI with residual disease 0.60 Log normal ($\mu = 0.51; \sigma = 0.09$) DDAC followed by T-DMI with residual disease 0.52 Truncated normal ($a = 0.18; b = 0.60$) e DDAC followed by T-DMI with residual disease 0.10 Truncated normal ($a = 0.18; b = 0.60$) e H with pCR 0.18 Log normal ($\mu = 1.70; \sigma = 0.18$) Log normal ($\mu = 1.70; \sigma = 0.18$) Log normal ($\mu = 1.70; \sigma = 0.18$) Log normal ($\mu = 1.70; \sigma = 0.18$) Log normal ($\mu = 1.70; \sigma = 0.18$) Log normal ($\mu = 1.70; \sigma = 0.18$) Aginvant treatment All treatments with residual disease other than H 0.24 Log normal ($\mu = 1.43; \sigma = 0.11$) All treatments with residual disease other than H 0.24 Log normal ($\mu = 1.43; \sigma = 0.11$) Subsequent distant recurrence after initial local recurrence 18.9 β ($\alpha = 13.00; \beta = 56.00$) Survival and mortality parameters 18.9 β ($\alpha = 13.00; \beta = 56.00$) Survival and mortality parameters 18.9 β ($\alpha = 13.00; \beta = 56.00$) With distant recurrence 38 Normal (38.00; 4.08) Normal (38.				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	• •	0.60	$I_{\text{og normal}} (u = 0.51, \sigma = 0.00)$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
H with pCR	·			
$\frac{3}{\sqrt{9}} \text{ locoregional recurrence probability for H with residual disease (reference group)}, \frac{8}{\sqrt{8}} \text{ a } = 34.00; \beta = 709.00) \text{ evence group)}, \frac{8}{\sqrt{8}} \text{ log normal } (\mu = -1.43; \sigma = 0.11) \text{ Hith pCR} \text{ log normal } (\mu = -1.43; \sigma = 0.11) \text{ Hith pCR} \text{ log normal } (\mu = -1.43; \sigma = 0.11) \text{ subsequent distant recurrence after initial local recurrence} \text{ loy probability,} \text{ log normal } (\mu = -1.43; \sigma = 0.11) \text{ subsequent distant recurrence after initial local recurrence} \text{ loy probability,} \text{ log normal } (\mu = -1.43; \sigma = 0.11) \text{ subsequent distant recurrence after initial local recurrence} \text{ loy probability,} \text{ log normal } (\mu = -1.43; \sigma = 0.11) \text{ subsequent distant recurrence after initial local recurrence} \text{ loy probability probability parameters} \text{ Median survival, no} \text{ with distant recurrence} \text{ log Normal } (38.00; 4.08) \text{ Normal } (38.00; 4.08) \text{ With distant recurrence free state} \text{ Background mortality informal parameters} \text{ Normal } (8.00; 2.00) \text{ Mortality recurrence-free state} \text{ log log normal } (\mu = 0.03; \sigma = 0.08) \text{ Normal } (38.00; 2.00) \text{ Normal risk of death due to CHE, } \text{ log normal } (\mu = 0.03; \sigma = 0.08) \text{ log normal } (\mu = 0.03; \rho = 2647.72) \text{ group)}, \frac{9}{9} \text{ log normal parameters} \text{ log normal } (\mu = 0.03; \sigma = 0.08) \text{ log normal } (\mu = 0.03; \rho = 2647.72) \text{ log normal } (\mu = 0.03; \rho = 0.08) \text{ log normal } (\mu = 0.03; \sigma = 0.08) \text{ log normal } (\mu = 0.03; \sigma = 0.08) \text{ log normal } (\mu = 0.03; \sigma = 0.08) \text{ log normal } (\mu = 0.03; \sigma = 0.08) \text{ log normal } (\mu = 0.03; \sigma = 0.08) \text{ log normal } (\mu = 0.03; \sigma = 0.08) \text{ log normal } (\mu = 0.03; \sigma = 0.08) \text{ log normal } (\mu = 0.03; \sigma = 0.08) \text{ log normal } (\mu = 0.03; \sigma = 0.08) \text{ log normal } (\mu = 0.03; \sigma = 0.08) \text{ log normal } (\mu = 0.03; \sigma = 0.08) \text{ log normal } (\mu = 0.03; \sigma = 0.08) \text{ log normal } (\mu = 0.03; \sigma = 0.08) \text{ log normal } (\mu = 0.03; \sigma = 0.08) \text{ log normal } (\mu = 0.03; \sigma = 0.08) log $		0.18	Log normal (μ =-1.70; σ =0.18)	
erence group) ,% RR by adjuvant treatment All treatments with residual disease other than H 0.24			0 (0100 0 5000)	
All treatments with residual disease other than H 0.24 $^{\rm f}$ Log normal (μ =-1.43; σ =0.11) H with pCR 0.24 $^{\rm g}$ Log normal (μ =-1.43, σ =0.11) Subsequent distant recurrence after initial local recurrence 18.9 $^{\rm g}$ β (α = 13.00; β = 56.00) Survival and mortality parameters Median survival, mo With distant recurrence 38 Normal (38.00; 4.08) With actual recurrence 48 Normal (38.00; 4.08) Mortality recurrence-free state 49 Background mortality life table, age-dependent 49 Annual risk of death due to CHF, β 12.70 $^{\rm g}$ β (α = 69.93; β = 488.07) Chemotherapy toxicityc CHF 1-y probability in patients with non-AC chemotherapy (reference group) β 1.26 Log normal (μ =-0.23; σ =-0.08) Acute myeloid leukemia 1-1 yr probability in patients with non-hand chemotherapy (reference group) β 1.26 Log normal (μ =-0.23; σ =-0.08) Acute myeloid leukemia 1-1 yr probability in patients with no chemotherapy (reference group) β 0.10 $^{\rm g}$ β (α = 138.30; β = 197.505.60) RR for α AC chemothrepy 1.68 Log normal (μ =-0.13; σ =-0.28) NR for AC chemothrepy 1.68 Log normal (μ =-0.13; σ =-0.28) NR for AC chemothrepy 1.69 Log normal (μ =-0.12; σ =-0.28) NR for AC chemothrepy 1.69 Log normal (μ =-0.12; σ =-0.28) NR for Chemothrepy 1.69 Log normal (μ =-0.12; σ =-0.28) NR for AC chemothrepy 1.69 Log normal (μ =-0.12; σ =-0.28) NR for AC chemothrepy 1.69 Log normal (μ =-0.13; σ =-0.28) NR for Chemothrepy 1.69 Log normal (μ =-0.13; σ =-0.28) NR for AC chemothrepy 1.69 Log normal (μ =-0.13; σ =-0.28) NR for AC chemothrepy 1.69 Log normal (μ =-0.13; σ =-0.28) Log normal (μ =-0.13; σ =-0.28) NR for AC chemothrepy 1.69 Log normal (μ =-0.13; σ =-0.28) Log normal (μ		4.6	β ($a = 34.00$; $\beta = 709.00$)	
H with pCR subsequent distant recurrence after initial local recurrence 18.9\text{ log normal } (\mu = -1.43, \sigma = 0.11) Subsequent distant recurrence after initial local recurrence 18.9\text{ log normal } (\mu = -1.30); \beta = 56.00) Survival and mortality parameters	RR by adjuvant treatment			
Subsequent distant recurrence after initial local recurrence 10 y probability, β (α =13.00; β =56.00) Survival and mortality parameters Median survival, mo With distant recurrence With distant recurrence 38 Normal (38.00; 4.08) Mortality recurrence-free state Background mortality life table, age-dependent Annual risk of death due to CHF, β 12.70% Demotherapy toxicityc CHF 1-y probability in patients with non-AC chemotherapy (reference group). β RR for AC chemothrepy 1.26 Log normal (μ =-0.23; ρ =-0.08) Acute myeloid leukemia 1-y probability in patients with no chemotherapy (reference group). β RR for AC chemothrepy 1.26 Log normal (μ =-0.23; ρ =0.08) Acute myeloid leukemia 1-y probability in patients with no chemotherapy (reference group). β RR for AC chemothrepy 1.88 Log normal (μ =-0.13; ρ =0.35) RR for AC chemothrepy 1.68 Log normal (μ =-0.13; ρ =0.35) RR for AC chemothrepy 1.68 Log normal (μ =-0.13; ρ =0.28) Rosadjuvant treatment regimenj HP 64,389 7 (α =25.00; β =2575.56) THP 65,428 7 (α =25.00; β =2617.10) DDACTHP 106,787 106,787 107 108,787 109 Adjuvant treatment regimenj H 108,995 9 (α =25.00; β =6130.28) Adjuvant Hafter necadjuvant TCHP 135,318 7 (α =25.00; β =3736.96) Adjuvant T-DM1 after necadjuvant TCHP 135,318 7 (α =25.00; β =5794.62) DACTHP 135,318 7 (α =25.00; β =5794.62) Adjuvant T-DM1 after necadjuvant TCHP 135,318 7 (α =25.00; β =5840.20) Adjuvant T-DM1 after necadjuvant TCHP 135,318 7 (α =25.00; β =5840.20) Adjuvant T-DM1 after necadjuvant TCHP 135,318 7 (α =25.00; β =5934.62) Adjuvant T-DM1 after necadjuvant TCHP 135,318 7 (α =25.00; β =5934.62) Adjuvant T-DM1 after necadjuvant TCHP 135,318 7 (α =25.00; β =5934.62) Adjuvant T-DM1 after necadjuvant TCHP 135,318 7 (α =25.00; β =5934.12) Testament cost of recurrence First y 21,005 ^k 7 (α =25.00; β =5934.62)	All treatments with residual disease other than H	$0.24^{\rm f}$	Log normal (μ =-1.43; σ =0.11)	
10-y probability, 20	H with pCR	0.24 ^g	Log normal (μ =-1.43, σ =0.11)	
Survival and mortality parameters	Subsequent distant recurrence after initial local recurrence			
Survival and mortality parameters	10-y probability,%	18.9 ^h	β (α =13.00; β =56.00)	
Median survival, mo With distant recurrence 38 Normal (38.00; 4.08) With acute myeloid leukemia 8 Normal (8.00; 2.00) Mortality recurrence-free state Background mortality life table, age-dependent NA Annual risk of death due to CHF, % 12.70% β (a =69.93; β =488.07) Chemotherapy toxicityc I-y probability in patients with non-AC chemotherapy (reference group) .% 3.7 β (a =100.32; β =2647.72) RR for AC chemothrepy 1.26 Log normal (μ =-0.23; σ =0.08) Acute myeloid leukemia 1-y probability in patients with no chemotherapy (reference group) .% 0.10% β (a =138.30; β =197.505.60) RR for non-AC chemothrepy 0.88 Log normal (μ =-0.13; σ =0.35) RR for AC ac emothrepy 1.68 Log normal (μ =-0.13; σ =0.35) Neoadjuvant treatment regimenj HP 64,389 γ (a =25.00; β =2577.56) THP 65,428 γ (a =25.00; β =2517.10) DDACTHP 153,577 γ (a =25.00; β =617.10) DDACTHP 153,577 γ (a =25.00; β =6314.82) TDMI 157,871 γ (a =25.00; β =6314.82) DDAC followed by T-DMI 264,658				
With distant recurrence With acute myeloid leukemia Annual risk of death due to CHF, % Chemotherapy toxicityc CHF 1-y probability in patients with non-AC chemotherapy (reference group) (reference group) (π) Refor AC chemothrepy Acute myeloid leukemia 1-y probability in patients with no chemotherapy (reference group) (π) Refor AC chemothrepy 1.26 Log normal (μ =-0.23; σ =0.08) Acute myeloid leukemia 1-y probability in patients with no chemotherapy (reference group) (π) Refor AC chemothrepy 1.26 Refor AC chemothrepy 1.26 Refor AC chemothrepy 1.26 Refor AC chemothrepy 1.28 Refor AC chemothrepy 1.29 Refor AC chemothrepy 1.29 Refor AC chemothrepy 1.20 Refor AC chemothrepy 1.26 Log normal (μ =-0.23; β =-2647.72) Refor AC chemothrepy 1.20 Re	·			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	· · · · · · · · · · · · · · · · · · ·	38	Normal (38.00: 4.08)	
Mortality recurrence-free state Background mortality life table, age-dependent NA Annual risk of death due to CHF, % 12.70% β (a =69.93; β =488.07) Chemotherapy toxicityc 1-y probability in patients with non-AC chemotherapy (reference group) ,% 3.7 β (a =100.32; β =2647.72) RR for AC chemothrepy 1.26 Log normal (μ = -0.23; σ =0.08) Acute myeloid leukemia 3.7 β (a =138.30; β =197.505.60) RR for non-AC chemothrepy 0.88 Log normal (μ = -0.13; σ =0.35) RR for AC chemothrepy 1.68 Log normal (μ = 0.13; σ =0.35) RR for AC chemothrepy 1.68 Log normal (μ = 0.52; σ =0.28) Costs, \$ i Neoadjuvant treatment regimenj 4 HP 64,389 γ (a =25.00; β =2575.56) THP 65,428 γ (a =25.00; β =2617.10) DDAC/THP 106.787 γ (a =25.00; β =2617.10) TCHP 153,257 γ (a =25.00; β =4359.78) TDM1 157,871 γ (a =25.00; β =4359.78) TDM2 followed by T-DM1 156,858 γ (a =25.00; β =619.22) DDAC/THP followed by T-DM1 199,230 γ (a =25.00; β =7969.21) <td></td> <td></td> <td></td>				
Annual risk of death due to CHF, % 12.70% β (α =69.93; β =488.07) Chemotherapy toxicitye CHF 1-y probability in patients with non-AC chemotherapy (reference group), % RR for AC chemothrepy 1.26 Log normal (μ =-0.23; σ =0.08) Acute myeloid leukemia 1-y probability in patients with no chemotherapy (reference group), % 0.10% β (α =138.30; β =197.505.60) RR for non-AC chemothrepy 0.88 Log normal (μ =-0.13; σ =0.35) RR for AC chemothrepy 1.68 Log normal (μ =0.52; σ =0.28) Costs, \$\frac{1}{3}\$ Neoadjuvant treatment regimenj HP 64,389 γ (α =25.00; β =2575.56) THPP 65,428 γ (α =25.00; β =2617.10) DDAC/THP 106.787 γ (α =25.00; β =6130.28) Adjuvant treatment regimenj H 108,995 γ (α =25.00; β =6130.28) Adjuvant treatment regimenj H 108,995 γ (α =25.00; β =6314.82) DDAC/THP followed by T-DM1 264,658 γ (α =25.00; β =6314.82) DDAC/THP followed by T-DM1 199,230 γ (α =25.00; β =6314.82) DDAC/THP 135,318 γ (α =25.00; β =5741.70) Treatment cost of recurrence, \$ Locoregional recurrence First γ 21,005 γ 7 (α =25.00; β =840.20) after first γ 22,335k γ (α =25.00; β =840.20) after first γ 21,005 γ 7 (α =25.00; β =840.20) after first γ 22,335k γ (α =25.00; β =840.20)		Background mortality life		
Chemotherapy toxicityc CHF 3.7 β (a = 100.32; β = 2647.72) group) , % RR for AC chemothrepy RR for AC chemothrepy 1.26 Log normal (μ = -0.23; σ = 0.08) Acute myeloid leukemia 1-y probability in patients with no chemotherapy (reference group) ,% 0.10% β (a = 138.30; β = 197 505.60) RR for non-AC chemothrepy 0.88 Log normal (μ = -0.13; σ = 0.35) RR for AC chemothrepy 1.68 Log normal (μ = 0.52; σ = 0.28) Costs, § i Neoadjuvant treatment regimenj HP 64,389 γ (a = 25.00; β = 2575.56) THP 65,428 γ (a = 25.00; β = 2617.10) DDAC/THP 106.787 γ (a = 25.00; β = 6130.28) Adjuvant treatment regimenj H 108,995 γ (a = 25.00; β = 6130.28) DH 157,871 γ (a = 25.00; β = 6314.82) DDAC followed by T-DM1 264,658 γ (a = 25.00; β = 6314.82) DDAC followed by T-DM1 29,230 γ (a = 25.00; β = 6314.82) <td cols<="" td=""><td>Annual risk of death due to CHE (/</td><td></td><td>P (~ -60 02, P -499 07)</td></td>	<td>Annual risk of death due to CHE (/</td> <td></td> <td>P (~ -60 02, P -499 07)</td>	Annual risk of death due to CHE (/		P (~ -60 02, P -499 07)
CHF 1-y probability in patients with non-AC chemotherapy (reference group) .% 3.7 β (a = 100.32; β = 2647.72) RR for AC chemothrepy 1.26 Log normal (μ = -0.23; σ = 0.08) Acute myeloid leukemia	· · · · · · · · · · · · · · · · · · ·	12.70%	p (u -09.93, p -400.07)	
1-y probability in patients with non-AC chemotherapy (reference group) 3.7 β ($a=100.32$; $β=2647.72$) group) ,% Log normal ($μ=-0.23$; $σ=0.08$) RR for AC chemothrepy 1.26 Log normal ($μ=-0.23$; $σ=0.08$) Acute myeloid leukemia 1-y probability in patients with no chemotherapy (reference group) 0.10% $β$ ($a=138.30$; $β=197.505.60$) RR for non-AC chemothrepy 0.88 Log normal ($μ=-0.13$; $σ=0.35$) RR for AC chemothrepy 1.68 Log normal ($μ=-0.13$; $σ=0.35$) RR for AC chemothrepy 1.68 Log normal ($μ=-0.13$; $σ=0.35$) RR for AC chemothrepy 1.68 Log normal ($μ=-0.13$; $σ=0.35$) RR for AC chemothrepy 1.68 Log normal ($μ=-0.13$; $σ=0.35$) RR for AC chemothrepy 1.68 Log normal ($μ=-0.13$; $σ=0.35$) RR for AC chemothrepy 1.68 Log normal ($μ=-0.13$; $σ=0.35$) RB for AC chemothrepy 1.68 Log normal ($μ=-0.13$; $σ=0.35$) RB for AC chemothrepy 0.88 Log normal ($μ=-0.13$; $σ=0.35$) RB for AC chemothrepy 0.89 $γ$ ($α=25.00$; $β=2671.20$) HP 64,389 $γ$ ($α=25.00$; $β=613.10$)		<u> </u>		
		9.7	θ (α -100 22 . θ -2647 72)	
RR for AC chemothrepy 1.26 Log normal (μ = -0.23; σ = 0.08) Acute myeloid leukemia 1-y probability in patients with no chemotherapy (reference group) ,% 0.10% $β$ (a = 138.30; $β$ = 197 505.60) RR for non-AC chemothrepy 0.88 Log normal (μ = -0.13; σ = 0.35) RR for AC chemothrepy 1.68 Log normal (μ = -0.52; σ = 0.28) Costs, \$ i Neoadjuvant treatment regimenj HP 64,389 γ (a = 25.00; $β$ = 2575.56) THP 65,428 γ (a = 25.00; $β$ = 2617.10) DDAC/THP 106.787 γ (a = 25.00; $β$ = 4271.49) TCHP 153,257 γ (a = 25.00; $β$ = 6130.28) Adjuvant treatment regimenj 1 108,995 γ (a = 25.00; $β$ = 4359.78) TDMI 157,871 γ (a = 25.00; $β$ = 6314.82) DDAC/THP followed by T-DMI 264,658 γ (a = 25.00; $β$ = 6176.32) DDAC followed by T-DMI 199,230 γ (a = 25.00; $β$ = 5796.21) Adjuvant H after neoadjuvant TCHP 135,318 γ (a = 25.00; $β$ = 5412.70) Treatment cost of recurrence, \$ \$ Locoregional recurrence \$		3.7	$p (\alpha = 100.32; p = 2047.72)$	
Acute myeloid leukemia 1-y probability in patients with no chemotherapy (reference group) ,% 0.10% β (a = 138.30; β = 197 505.60) RR for non-AC chemothrepy 0.88 Log normal (μ = -0.13; σ = 0.35) RR for AC chemothrepy 1.68 Log normal (μ = 0.52; σ = 0.28) Costs, \$i Neoadjuvant treatment regimenj HP 64,389 γ (a = 25.00; β = 2575.56) THP 65,428 γ (a = 25.00; β = 2617.10) DDAC/THP 106,787 γ (a = 25.00; β = 4271.49) TCHP 153,257 γ (a = 25.00; β = 6130.28) Adjuvant treatment regimenj TH 108,995 γ (a = 25.00; β = 4359.78) TDM1 157,871 γ (a = 25.00; β = 6314.82) DDAC/THP followed by T-DM1 264,658 γ (a = 25.00; β = 61956.32) DDAC followed by T-DM1 199,230 γ (a = 25.00; β = 7969.21) Adjuvant H after neoadjuvant TCHP 33,424 γ (a = 25.00; β = 5796.92) Adjuvant T-DM1 after neoadjuvant TCHP 135,318 γ (a = 25.00; β = 5412.70) Treatment cost of recurrence \$		1 26	$I_{\text{og normal}} (u = 0.23; \sigma = 0.08)$	
1-y probability in patients with no chemotherapy (reference group) ,% 0.10% β (a = 138.30; β = 197 505.60) RR for non-AC chemothrepy 0.88 Log normal (μ =-0.13; σ =0.35) RR for AC chemothrepy 1.68 Log normal (μ =-0.13; σ =0.35) RN for AC chemothrepy 1.68 Log normal (μ =0.52; σ =0.28) Costs, \$\\$ i \$\\$ Neoadjuvant treatment regimenj HP 64,389 γ (a =25.00; β =2575.56) THP 65,428 γ (a =25.00; β =2617.10) DDAC/THP 106.787 γ (a =25.00; β =6130.28) Adjuvant treatment regimenj *** *** ***		1.20	Log ποιτιιαι (μ =-0.23, θ =0.00)	
RR for non-AC chemothrepy 0.88 Log normal (μ = 0.13; σ = 0.35) RR for AC chemothrepy 1.68 Log normal (μ = 0.52; σ = 0.28) Costs, \$ i Neoadjuvant treatment regimenj HP 64,389 γ (α = 25.00; β = 2575.56) THP 65,428 γ (α = 25.00; β = 2617.10) DDAC/THP 106,787 γ (α = 25.00; β = 4271.49) TCHP 153,257 γ (α = 25.00; β = 6130.28) Adjuvant treatment regimenj 1 18,995 γ (α = 25.00; β = 6134.82) DDMC/THP followed by T-DM1 264,658 γ (α = 25.00; β = 6314.82) DDAC/THP followed by T-DM1 199,230 γ (α = 25.00; β = 7969.21) Adjuvant H after neoadjuvant TCHP 93,424 γ (α = 25.00; β = 3736.96) Adjuvant T-DM1 after neoadjuvant TCHP 135,318 γ (α = 25.00; β = 5412.70) Treatment cost of recurrence, \$ \$ Locoregional recurrence \$ \$ First y 21,005 ^k γ (α = 25.00; β = 840.20) after first y 23,35k γ (α = 25.00; β = 5794.62) Chemotherapy toxic effects		0.100/	0 (= 129.20, 0 107.E0E.60)	
RR for AC chemothrepy 1.68 Log normal (μ = 0.52; σ = 0.28) Costs, \$ i Neoadjuvant treatment regimenj HP 64,389 γ (α = 25.00; β = 2575.56) THP 65,428 γ (α = 25.00; β = 2617.10) DDAC/THP 106.787 γ (α = 25.00; β = 4271.49) TCHP 153,257 γ (α = 25.00; β = 6130.28) Adjuvant treatment regimenj H 108,995 γ (α = 25.00; β = 6314.82) DDAC/THP followed by T-DM1 264,658 γ (α = 25.00; β = 6134.82) DDAC followed by T-DM1 199,230 γ (α = 25.00; β = 7969.21) Adjuvant H after neoadjuvant TCHP 93,424 γ (α = 25.00; β = 3736.96) Adjuvant T-DMI after neoadjuvant TCHP 135,318 γ (α = 25.00; β = 5412.70) Treatment cost of recurrence, \$ Locoregional recurrence First y 21,005k γ (α = 25.00; β = 840.20) after first y 2,335k γ (α = 25.00; β = 93.41) Distant recurrence Annual cost of care 144,865l γ (α = 25.00; β = 5794.62) Chemotherapy toxic effects				
Costs, \$ i Neoadjuvant treatment regimenj 44,389 γ (α =25.00; β =2575.56) THP 65,428 γ (α =25.00; β =2617.10) DDAC/THP 106.787 γ (α =25.00; β =4271.49) TCHP 153,257 γ (α =25.00; β =6130.28) Adjuvant treatment regimenj 1 H 108,995 γ (α =25.00; β =4359.78) TDMI 157,871 γ (α =25.00; β =6314.82) DDAC/THP followed by T-DMI 264,658 γ (α =25.00; β =10586.32) DDAC followed by T-DMI 199,230 γ (α =25.00; β =7969.21) Adjuvant H after neoadjuvant TCHP 93,424 γ (α =25.00; β =3736.96) Adjuvant T-DMI after neoadjuvant TCHP 135,318 γ (α =25.00; β =5412.70) Treatment cost of recurrence, \$ 1 Locoregional recurrence γ (α =25.00; β =840.20) after first y 21,005k γ (α =25.00; β =93.41) Distant recurrence Annual cost of care 144,865l γ (α =25.00; β =5794.62) Chemotherapy toxic effects				
Neoadjuvant treatment regimenj HP 64,389 γ (α =25.00; β =2575.56) THP 65,428 γ (α =25.00; β =2617.10) DDAC/THP 106.787 γ (α =25.00; β =4271.49) TCHP 153,257 γ (α =25.00; β =6130.28) Adjuvant treatment regimenj *** H 108,995 γ (α =25.00; β =4359.78) TDM1 157,871 γ (α =25.00; β =6314.82) DDAC/THP followed by T-DM1 264,658 γ (α =25.00; β =61786.32) DDAC followed by T-DM1 199,230 γ (α =25.00; β =7969.21) Adjuvant H after neoadjuvant TCHP 93,424 γ (α =25.00; β =3736.96) Adjuvant T-DM1 after neoadjuvant TCHP 135,318 γ (α =25.00; β =5412.70) Treatment cost of recurrence, \$ ** Locoregional recurrence ** First y 21,005 ^k γ (α =25.00; β =840.20) after first y 2,335k γ (α =25.00; β =93.41) Distant recurrence Annual cost of care 144,865 ^l γ (α =25.00; β =5794.62)		1.68	Log normal ($\mu = 0.52$; $\sigma = 0.28$)	
HP 64,389 γ (a = 25.00; β = 2575.56) THP 65,428 γ (a = 25.00; β = 2617.10) DDAC/THP 106.787 γ (a = 25.00; β = 4271.49) TCHP 153,257 γ (a = 25.00; β = 6130.28) Adjuvant treatment regimenj 108,995 γ (a = 25.00; β = 4359.78) TDM1 157,871 γ (a = 25.00; β = 6314.82) DDAC/THP followed by T-DM1 264,658 γ (a = 25.00; β = 10586.32) DDAC followed by T-DM1 199,230 γ (a = 25.00; β = 7969.21) Adjuvant H after neoadjuvant TCHP 93,424 γ (a = 25.00; β = 3736.96) Adjuvant T-DM1 after neoadjuvant TCHP 135,318 γ (a = 25.00; β = 5412.70) Treatment cost of recurrence, \$ 1 Locoregional recurrence \$ First y 21,005 ^k γ (a = 25.00; β = 840.20) after first y 2,335k γ (a = 25.00; β = 5794.62) Distant recurrence Annual cost of care 144,865 ^l γ (a = 25.00; β = 5794.62)				
THP 65,428 γ (α = 25.00; β = 2617.10) DDAC/THP 106.787 γ (α = 25.00; β = 4271.49) TCHP 153,257 γ (α = 25.00; β = 6130.28) Adjuvant treatment regimenj H 108,995 γ (α = 25.00; β = 4359.78) TDM1 157,871 γ (α = 25.00; β = 6314.82) DDAC/THP followed by T-DM1 264,658 γ (α = 25.00; β = 10586.32) DDAC followed by T-DM1 199,230 γ (α = 25.00; β = 7969.21) Adjuvant H after neoadjuvant TCHP 93,424 γ (α = 25.00; β = 5796.92) Adjuvant T-DM1 after neoadjuvant TCHP 135,318 γ (α = 25.00; β = 5412.70) Treatment cost of recurrence, \$ $\frac{1}{10000000000000000000000000000000000$				
DDAC/THP 106.787 γ (α = 25.00; β = 4271.49) TCHP 153,257 γ (α = 25.00; β = 6130.28) Adjuvant treatment regimenj γ </td <td></td> <td></td> <td></td>				
TCHP 153,257 γ (α =25.00; β =6130.28) Adjuvant treatment regimenj 108,995 γ (α =25.00; β =4359.78) TDM1 157,871 γ (α =25.00; β =6314.82) DDAC/THP followed by T-DM1 264,658 γ (α =25.00; β =10586.32) DDAC followed by T-DM1 199,230 γ (α =25.00; β =7969.21) Adjuvant H after neoadjuvant TCHP 93,424 γ (α =25.00; β =3736.96) Adjuvant T-DM1 after neoadjuvant TCHP 135,318 γ (α =25.00; β =5412.70) Treatment cost of recurrence 1 First y 21,005 ^k γ (α =25.00; β =840.20) after first y 2,335k γ (α =25.00; β =93.41) Distant recurrence 144,865 ^l γ (α =25.00; β =5794.62) Chemotherapy toxic effects		65,428		
Adjuvant treatment regimenj In the state of the s	DDAC/THP	106.787	γ (α =25.00; β =4271.49)	
H 108,995 γ (α = 25.00; β = 4359.78) TDM1 157,871 γ (α = 25.00; β = 6314.82) DDAC/THP followed by T-DM1 264,658 γ (α = 25.00; β = 10586.32) DDAC followed by T-DM1 199,230 γ (α = 25.00; β = 7969.21) Adjuvant H after neoadjuvant TCHP 93,424 γ (α = 25.00; β = 3736.96) Adjuvant T-DM1 after neoadjuvant TCHP 135,318 γ (α = 25.00; β = 5412.70) Treatment cost of recurrence, \$ Vocoregional recurrence First y 21,005 ^k γ (α = 25.00; β = 840.20) after first y 2,335k γ (α = 25.00; β = 93.41) Distant recurrence Annual cost of care 144,865 ^l γ (α = 25.00; β = 5794.62) Chemotherapy toxic effects	TCHP	153,257	γ (α =25.00; β =6130.28)	
TDMI 157,871 γ (α = 25.00; β = 6314.82) DDAC/THP followed by T-DM1 264,658 γ (α = 25.00; β = 10586.32) DDAC followed by T-DM1 199,230 γ (α = 25.00; β = 7969.21) Adjuvant H after neoadjuvant TCHP 93,424 γ (α = 25.00; β = 3736.96) Adjuvant T-DM1 after neoadjuvant TCHP 135,318 γ (α = 25.00; β = 5412.70) Treatment cost of recurrence, \$ \$ Locoregional recurrence \$ \$ First y 21,005 ^k γ (α = 25.00; β = 840.20) after first y 2,335k γ (α = 25.00; β = 93.41) Distant recurrence Annual cost of care 144,865 ^l γ (α = 25.00; β = 5794.62) Chemotherapy toxic effects	Adjuvant treatment regimenj			
DDAC/THP followed by T-DM1 264,658 γ (α = 25.00; β = 10586.32) DDAC followed by T-DM1 199,230 γ (α = 25.00; β = 7969.21) Adjuvant H after neoadjuvant TCHP 93,424 γ (α = 25.00; β = 3736.96) Adjuvant T-DM1 after neoadjuvant TCHP 135,318 γ (α = 25.00; β = 5412.70) Treatment cost of recurrence, \$ Locoregional recurrence 21,005 ^k γ (α = 25.00; β = 840.20) after first y 2,335k γ (α = 25.00; β = 93.41) Distant recurrence Annual cost of care 144,865 ^l γ (α = 25.00; β = 5794.62) Chemotherapy toxic effects	Н	108,995	γ (α =25.00; β =4359.78)	
DDAC/THP followed by T-DM1 264,658 γ (α = 25.00; β = 10586.32) DDAC followed by T-DM1 199,230 γ (α = 25.00; β = 7969.21) Adjuvant H after neoadjuvant TCHP 93,424 γ (α = 25.00; β = 3736.96) Adjuvant T-DM1 after neoadjuvant TCHP 135,318 γ (α = 25.00; β = 5412.70) Treatment cost of recurrence, \$ Locoregional recurrence 21,005 ^k γ (α = 25.00; β = 840.20) after first y 2,335k γ (α = 25.00; β = 93.41) Distant recurrence Annual cost of care 144,865 ^l γ (α = 25.00; β = 5794.62) Chemotherapy toxic effects	TDM1	157,871	γ (α =25.00; β =6314.82)	
Adjuvant H after neoadjuvant TCHP 93,424 γ (α = 25.00; β = 3736.96) Adjuvant T-DM1 after neoadjuvant TCHP 135,318 γ (α = 25.00; β = 5412.70) Treatment cost of recurrence, \$ Locoregional recurrence First y 21,005 ^k γ (α = 25.00; β = 840.20) after first y 2,335k γ (α = 25.00; γ = 93.41) Distant recurrence Annual cost of care 144,865 ^l γ (α = 25.00; β = 5794.62) Chemotherapy toxic effects	DDAC/THP followed by T-DM1	264,658		
Adjuvant H after neoadjuvant TCHP 93,424 γ (α = 25.00; β = 3736.96) Adjuvant T-DM1 after neoadjuvant TCHP 135,318 γ (α = 25.00; β = 5412.70) Treatment cost of recurrence, \$ Locoregional recurrence First y 21,005 ^k γ (α = 25.00; β = 840.20) after first y 2,335k γ (α = 25.00; γ = 93.41) Distant recurrence Annual cost of care 144,865 ^l γ (α = 25.00; β = 5794.62) Chemotherapy toxic effects	·	<u> </u>		
Adjuvant T-DM1 after neoadjuvant TCHP 135,318 γ (α =25.00; β =5412.70) Treatment cost of recurrence, \$ Locoregional recurrence First y 21,005 ^k γ (α =25.00; β =840.20) after first y 2,335k γ (α =25.00; β =93.41) Distant recurrence Annual cost of care 144,865 ^l γ (α =25.00; β =5794.62) Chemotherapy toxic effects	•			
Treatment cost of recurrence, \$ Locoregional recurrence First y 21,005 k γ (α = 25.00; β = 840.20) after first y 2,335 k γ (α = 25.00; β = 93.41) Distant recurrence Annual cost of care 144,865 l γ (α = 25.00; β = 5794.62) Chemotherapy toxic effects		·		
Locoregional recurrence γ (a = 25.00; β = 840.20) First y 21,005k γ (a = 25.00; β = 840.20) after first y 2,335k γ (a = 25.00; β = 93.41) Distant recurrence 414,865k γ (a = 25.00; β = 5794.62) Chemotherapy toxic effects 144,865k γ (a = 25.00; β = 5794.62)		,	, , , , , , , , , , , , , , , , , , , ,	
First y 21,005k γ (a = 25.00; β = 840.20) after first y 2,335k γ (a = 25.00; β = 93.41) Distant recurrence 414,865k γ (a = 25.00; β = 5794.62) Chemotherapy toxic effects 144,865k γ (a = 25.00; β = 5794.62)				
after first y2,335k γ (α =25.00; β =93.41)Distant recurrenceAnnual cost of care144,865\(^1\) γ (α =25.00; β =5794.62)Chemotherapy toxic effects		21 005 ^k	y = (a - 25.00; B - 840.20)	
Distant recurrence Annual cost of care 144,865 1 γ (α =25.00; β =5794.62) Chemotherapy toxic effects				
Annual cost of care 144,865 γ (α =25.00; β =5794.62) Chemotherapy toxic effects		4,000K	$\gamma (u -25.00, p = 95.41)$	
Chemotherapy toxic effects		144 OCE ¹	(~ 95.00 0 5704.00)	
		144,800	$\gamma (a = 25.00; p = 5/94.62)$	
Initial CHF treatment 36,748 γ (a = 25.00; β = 1469.92)		00.740	(05.00 0 1400.00)	
	IIIIUAI CHY treatment	30,748	γ ($a = 25.00$; $\beta = 1469.92$)	

Annual CHF care	7,035	γ (α =25.00; β =281.40)
Lifetime treatment of acute myeloid leukemia	21,345	γ (α =2530.10; β =1/8.44)
Utilities of health states		
First y recurrence free	0.79	β (α =87.73; β =24.17)
Second y and after		
Without recurrence	0.83	β (α =39.01; β =8.33)
With local recurrence	0.72	β (α =89.85; β =34.60)
With distant recurrence	0.53	β (α =4.61; β =4.13)
With CHF	0.71	β (α =72.38; β =25.97)
With acute myeloid leukemia	0.26	β (α =9.13; β =25.98)
Last v with distant recurrence before death	0.16	β (α =5.00; β =26.26)

CHF: congestive heart failure (鬱血性心不全), DDAC: dose-dense anthracydine/cydophosphamide (dose-dense AC (アントラサイクリン/シクロ ホスファミド) 療法), DDAC/THP: dose-dense anthracycline/ cyclophosphamide followed by paclitaxel, trastuzumab, and pertuzumab (dose-dense AC-THP療法), H: trastuzumab (トラスツズマブ), HP: trastuzumab and pertuzumab (トラスツズマブ, ペルツズマブ), NA: not applicable (該 当しない), pCR: pathologic complete response (病理学的完全奏功), RR: relative risk (相対リスク), TCHP: docetaxel, carboplatin, trastuzumab, and pertuzumab (ドセタキセル、カルボブラチン、トラスツズマブ、ペルツズマブ). T-DMI: trastuzumab emtansine (トラスツズマブエムタンシン). THP: paclitaxel, trastuzumab, and pertuzumab triplet (パクリタキセル、トラスツズマブ、ペルツズマブ3剤併用療法)

- a 臨床パラメータ, 効用値パラメータの確率分布は要約統計量から得た. ほとんどの費用パラメータについては, 要約統計量が得られ なかったため、20%のSEを仮定した.
- b この推定値は、KATHERINE試験におけるエストロゲン受容体陽性・受容体陰性癌の推定値、各タイプの患者割合を用いて得られた.
- c 再発, 急性骨髄性白血病、CHFのリスクを1年あたりの確率に変換し、これらをRRの形式でモデルに使用した。 D この設定に関するデータが不足しているため、仮定である。真の値は、術前化学療法DDAC/THPを投与されてpCRを達成したと考え られる患者が、pCR の状態でHを投与された場合の5年後の遠隔再発の確率である5%(Symmansら4)と、T-DM1を投与された残存 病変のある患者における遠隔再発の3年後の確率(von Minckwitzら8)との間にあると考えられた.
- e 残存病変がある場合の術後補助療法におけるDDAC/THP followed by T-DM1 の遠隔再発のRR,残存病変がある場合の術後補助療法にお けるDDAC followed by T-DM1 のRRについて、対数正規分布の適用も検討した。これらのパラメータに対数正規分布を適用しても、本 研究における費用対効果の結果は変わらないことが明らかになった。切断された正規分布は本研究の仮定をより適切に反映し、これ らのパラメータの不確実性をより適切に捉えていると考えた.
- f DDAC/THP followed by T-DM1, あるいはDDAC followed by T-DM1 を投与された残存病変を有する患者における局所再発確率のデータ はない. したがって、我々はT-DM1単独療法と同等であるという保守的な仮定を行った.
- g Hを投与されたpCRを達成した患者は、Hを投与された残存病変を有する患者よりも予後が良好である。よって、pCRを達成したH群 の局所再発率が残存病変を有するH群の局所再発率を上回ることはありえない. Gianniら5は、ベースライン時にKATHERINE試験よ りも高リスク集団を登録していたため、pCR達成患者でより高い局所再発の確率を報告した。したがって、KATHERINE試験でpCRを達成したH群の局所再発確率の推定値に基づいて、これらの推定値は残存病変を有するH群と同じであると仮定した。
- h この推定値は、Wapnirら34による10年間の試験期間中、最初の局所再発後に遠隔再発した患者数を用いて算出した。
- i すべての費用は2020年の米ドルで表示される.必要に応じて、消費者物価指数を用いて単価を2020年の米ドルにインフレ調整した.
- McKesson Corporationの薬価データを用いて、各治療レジメンの費用を算出した
- k Schousboeら29による局所再発の平均値であり、2008年1月から2020年1月まで消費者物価指数によってインフレ調整された。
- 1 遠隔再発に関する健康状態の費用は、転移性乳癌患者における治療レジメンの使用に関するFlatiron Health DatabaseとMcKesson Corporationの薬価データを用いて推定した。我々は、T-DM1のFDA承認後に診断された患者の使用実態データを使用した(すなわち、 2017年3月~2019年7月).

Table Y 割り付け方法ごとの一人あたり平均生存年とQALY (割引なし)

	Random	Random allocation	Waiting	ıg time	2006	2006 NKAS	Longevit	Longevity matching	QALY n	QALY maximizing
	Mean	95% C1	Mean	95% C1	Mean	95% CI	Mean	95% C1	Mean	95% C1
Life y										
Transplant recipients (by age group)										
18-29	27.2	(24.7-29.7)	27.2	(24.0-30.3)	32.8	(30.3-35.3)	31.5	(29.3-33.7)	29.2	(27.3-31.2)
30-39	26.5	(24.6-28.4)	25.4	(23.5-27.3)	29.2	(27.7-30.8)	30.1	(28.6-31.7)	27.5	(26.2-28.8)
40-49	23.4	(22.3-24.6)	22.2	(21.0-23.3)	23.4	(22.4-24.5)	22.6	(21.6-23.6)	23.4	(22.5-24.4)
50-59	15.2	(14.5-15.9)	15.0	(14.3-15.7)	14.5	(13.8-15.2)	14.5	(13.7-15.2)	15.6	(14.7-16.6)
>60	11.2	(10.7-11.6)	11.4	(11.0-11.9)	10.7	(10.2-11.3)	11.0	(10.4-11.6)	13.2	(11.5-14.8)
Transplant recipients (all)	18.0	(17.5-18.5)	17.1	(16.7-17.6)	21.1	(20.5-21.7)	21.2	(20.7-21.8)	23.6	(23.0-24.2)
No transplant (all)	8.9	(8.8-9.1)	9.0	(8.9-9.1)	9.0	(8.9-9.1)	6.8	(6.7-6.9)	6.5	(6.4-6.6)
QALYs										
Transplant recipients (by age group)										
18-29	22.4	(20.4-24.5)	22.4	(19.8-24.9)	27.1	(25.0-29.2)	26.0	(24.1-27.8)	24.1	(22.5-25.7)
30-39	21.4	(19.9-22.9)	20.6	(19.1-22.2)	23.8	(22.5-25.1)	24.5	(23.2-25.8)	22.4	(21.3-23.5)
40-49	18.9	(18.0-19.9)	17.9	(17.0-18.8)	18.9	(18.0-19.8)	18.3	(17.5-19.1)	19.1	(18.3-19.9)
50-59	12.3	(11.7-12.9)	12.1	(11.6-12.7)	11.7	(11.1-12.3)	11.7	(11.1-12.3)	12.7	(12.0-13.5)
>60	9.0	(8.7-9.4)	9.2	(8.8-9.6)	8.7	(8.2-9.1)	8.9	(8.4-9.4)	10.7	(9.3-12.0)
Transplant recipients(all)	14.6	(14.2-15.0)	13.9	(13.5-14.2)	17.1	(16.6-17.6)	17.2	(16.8-17.7)	19.3	(18.8-19.8)
No transplant(all)	6.9	(6 0 7 0)	6 9	(6.9-7.0)	7.0	(6 9-7 1)	5.2	(5.1-5.3)	5.1	(5.0-5.1)

Table Z 移植レシピエント、移植を受けていない患者、全ての患者を組み合わせたものの費用対効果の結果(割引あり)

	Transplant recipients	recipients	No tra	No transplant			All patients		
	Absolute costs	Absolute QALYs	Absolute costs	Absolute QALYs	Absolute costs	Absolute QALYs	Incremental costs	Incremental QALYs	ICER
	00000	S. Maria	00000	direct of	00000	S. C. C.	00000	A. rear	
Longevity matching	£ 632	44,704	£ 841	20,961	£ 1,473	65,655		1	1
QALY maximization	£ 681	48,045	£818	20,504	£ 1,499	68,549	£ 25	2,884	£8,751
Random	£ 591	40,236	£1,089	26,328	£ 1,679	66,563	£ 181	-1,986	Dominated
Waiting time	£ 584	39,496	£1,099	26,572	£ 1,684	66,068	£ 185	-2,481	Dominated
2006 NKAS	£ 625	44,,040	£1,097	26,529	£ 1,722	70,569	£ 224	2,020	£ 110,741

ICER: incremental cost-effectiveness ratio, NKAS: National Kidney Allocation Scheme, QALY: quality-adjusted life y.