【ダラキューロ配合皮下注】に関する費用対効果評価

[第 1.0 版]

【ヤンセンファーマ株式会社】 【提出日】2022 年 2 月 10 日

【目次】

0. 要旨	5
 対象となる医薬品・医療機器の性質 	
1.1 名称	
1.2 保険償還価格	
1.3 治療効果のメカニズム	
1.3.1 ダラツムマブ	
1.3.2 ボルヒアルロニダーゼ アルファ	
1.4 対象疾患	
1.5 使用方法等	9
1.6 対象疾患の治療における当該医薬品・の位置づけ	10
1.6.1 国内ガイドライン(日本血液学会)	10
1.6.2 国内ガイドライン(日本骨髄腫学会)	
1.6.3 海外ガイドライン(NCCN)	
1.7 主な有害事象	14
1.8 他国の医療技術評価機関における評価結果	15
 費用効果分析における分析条件の設定 	
2.1 分析対象とする集団	
2.2 比較対照	
2.3 分析の立場と費用の範囲	
2.4 効果指標	
2.5 分析期間	19
2.6 割引率	19
2.7 分析条件の設定の要約	20
3. Additional Benefits	22
3.1 Clinical Questions	22
3.2 Systematic Review	23
3.2.1 Implementation flow	23
3.2.2 Inclusion and exclusion criteria	24
3.2.3 Database	24
3.2.4 Conference search	
3.2.5 Search results	
3.2.6 Listing of clinical studies identified	

3.2.7 Summary of additional benefit assessment	. 36
3.2.8 Detailed table of clinical trials	.42
3.3 Evaluation of Additional Benefit	. 75
3.3.1 Results of additional benefit assessment	. 75
4. Details of Analytical Methods	. 86
4.1 Analytical Methods	. 86
4.1.1 Calculation of cost-effectiveness	. 86
4.1.2 Assumptions used in the model	. 90
4.2 Parameters Used in the Analysis	.92
4.2.1 Details of parameters such as efficacy and safety	.94
4.2.2 Details of QOL values	.97
4.2.3 Details of Cost Parameters	. 98
5. Analytical Results	109
5.1 Results of the Analysis	109
5.1.1 Incremental cost, effect, and ratio of cost-effectiveness in the base analy	ysis
	109
5.1.2 Sensitivity analyses	110
5.1.3 Assessing the validity of the analysis	111
5.1.4 Interpretation of Analysis Results	113
5.1.5 Price Adjustment Rate Weight	113
5.1.6 Price increases	113
5.2 Analysis Including Public Nursing Care Expenses and Productivity loss [only	if
applicable]	114
5.3 Other Analyses	114
5.3.1 Other analysis: cost difference from HCP time perspective	114
5.3.2 Other analysis: CUA (Scenario analysis)	115
6. 再分析用のデータ	120
7. 実施体制	121
8. 参考文献	122
Appendix A: Parameters Used in the Analysis (DVd [SC] vs Vd, Cost Utility Analy	rsis)
	129
Appendix B: Parameters Used in the Analysis (DRd [SC] vs Rd, Cost Utility Analy	sis)
	143
Appendix C: Time-to-Event Analysis for Progression-Free Survival (PFS)	157
Appendix D: Time-to-Event Analysis for Overall Survival (OS)	159

Appendix E: Time-to-Event Analysis for Time-To-Treatment Discontinuation (TTD). 161
Appendix F: Details of QOL Values (Disutility Inputs)163
Appendix G: Subsequent Treatment Costs in RRMM Models
Appendix H: Medical Resource Utilization167
Appendix I: Progression-Free Survival Distribution Parameters (Cost Utility Analysis)
Appendix J: Overall Survival Distribution Parameters (Cost Utility Analysis)
Appendix K: Time-to-Treatment Discontinuation Distribution Parameters (Cost Utility
Analysis)
Appendix L: MDV database analysis175
Appendix M: Cost per the administration from the perspective of HCP workload177
Appendix N: Literature of Asian and Japanese-only population
Appendix O: One-Way Sensitivity Analysis

<u>0. 要旨</u>

In the table below, include the content for the 主要分析. For other analysis performed, details can be found in the report section 5.3.

· [
 分析対象技術名 [1.1 節]	ダラキューロ配合皮下注(ダラツムマフ・ボルヒアルロニダーゼ
	アルファ) (Dara SC)
	イギリス(NICE):その他*
	イギリス(SMC):推奨 (Reimbursed in previously
	recommended regimens for Dara IV)
	フランス(HAS):SMR-important、ASMR-V(効率性評価:
他国の医療状態部に救止	不要)
他国の医療技術評価機関にのり	ドイツ(IQWiG):その他*
る評価結果 [1.8 即] 	カナダ(CADTH):その他*
	オーストラリア(PBAC):推奨 (Based on a cost
	minimization basis with Dara IV.)
	*NO HTA EVALUATION required for formulation
	changes. Reimbursement based on Dara IV
	造血幹細胞移植の適応とならない未治療の多発性骨髄腫及び
対象とする疾患・集団 [2.1 節] 	再発又は難治性の多発性骨髄腫
比較対照技術名 [2.2 節]	ダラザレックス点滴静注 (Dara IV)
分析の立場と費用の範囲 [2.3	公的医療の立場
節]	公的医療費
使用する効果指標 [2.4 節]	費用最小化分析:なし(費用のみ)
設定した分析期間 [2.5 節]	費用最小化分析:32週間(主要評価)および1年(感度分析)
割引率 [2.6 節]	費用最小化分析:なし (分析期間 ≤ 1 年)
	P: 造血幹細胞移植の適応とならない未治療の多発性骨髄腫
	及び再発又は難治性の多発性骨髄腫
システマティックレビューのクリニ カルクエスチョン [3.1/3.3 節]	I: Dara SC
	C: Dara IV
	O: 有効性(ORR、PFS、OS)、安全性、HRQoL
システマティックレビュー結果の	システマティックレビューの結果、組み入れ対象となる臨床試験
概要 [3.2/3.4 節]	等は1件であった。
間接比較の結果 [3.7 節]	該当せず

	┃ □ 追加的有用性あり ■「追加的有用性なし」あるいは「ある		
	とは判断できない」		
	有効性(ORR 及び PFS)に関して Dara SC は Dara IV に対		
	して非劣性であることが示された。また Dara SC と Dara IV		
	の間で Infusion related reaction(AE)率及び治療満足度		
	 に差があることが確認されているが、これらのベネフィットを費		
	 用効用分析の枠組みに組み込むことは困難である。治療満足		
追加的有用性の有無 [3.8 節] 	 度が高いことに加えて、薬物投与期間が短く、患者の拘束時間		
	 は短い。さらに、Dara SC は医療従事者による医療行為に要		
	する時間を大幅に短縮し、患者管理全体の効率を改善する可		
	能性がある。よって、その他の分析として、薬剤投与のための		
	来院時に HCP に要する時間とそれを金銭的価値に換算した値		
	の分析を実施した。: 「その他: HCP の時間的観点からの費用		
	差]		
	Based on the additional benefit assessment result,		
	Janssen determined to take a conservative		
	approach and performed a cost minimization		
	analysis as below.		
	An Excel model was built to calculate weekly direct		
	medical cost including drug, drug administration,		
	hospitalization and IRR (AE) management. Three		
	daratumumab regimens were included, DVMP, DRd		
	and DVd. For each of the regimen, we compare the		
	accumulative direct medical cost between Dara SC		
費用対効果の分析方法の概要	(intervention) and DARA IV (comparator). Final		
[4.1.1 項、4.2 節等]	results were pooled by the percentage of usage of		
	each regimen in actual clinical practice based on		
	MDV data.		
	The duration comparison is set to be 32 weeks		
	based on average daratumumab treatment duration		
	in Japan as base case. A sensitivity analysis was		
	performed with the duration of 52 weeks		
	[Sensitivity analysis 1]. Another sensitivity analysis		
	[Sensitivity analysis 1]. Another sensitivity analysis was performed assuming constitution of patients receiving		

	administration and safety) will not require
	hospitalization for regimen initiation [Sensitivity
	analysis 2].
	Dara SC results in lower total cost compared with
	Dara IV. Compared with Dara IV, Dara SC reduced
	total direct medical costs by ¥546,091 in the base
	case. The cost saving ranged from ¥443,078 to
結果の概要 [5.1 節]	¥721,951 among different regimens. The sensitivity
	analysis showed consistent results. In Sensitivity
	analysis 1 and 2, Dara SC reduced total direct
	medical costs by ¥550,036 and ¥481,985,
	respectively.
	In the base case analysis and sensitivity analysis of
	the main analysis, the result all demonstrated cost
	saving.
	Two other analysis results provided the additional
ICER の所属する確率が最も高	evaluation on HCP time/cost saving that contribute
いと考える区間	to overall health care system efficiency and the ICER
	result in a subset of Multiple Myeloma patients
	(RRMM) comparing to different comparators. As it is
	agreed that the main evaluation focuses on different
	population, comparator, and/or perspective, the
	analyses only served as supplementary analyses.

1. 対象となる医薬品・医療機器の性質

1.1 名称

- 製品名
 ダラキューロ配合皮下注
- 一般名
 ダラツムマブ(遺伝子組換え)1800mg、ボルヒアルロニダーゼ アルファ(遺伝子組換え)
 30000単位(1バイアル 15mL 中)

1.2 保険償還価格

保険償還価格:	15mL 1 バイアル 434,209 円
算定方式:	類似薬効比較方式(I)
算定上の最類似技術	ダラザレックス点滴静注 400mg
有用性系加算	有用性加算 II
加算率	5%

1.3 治療効果のメカニズム

1.3.1 ダラツムマブ

ダラツムマブは,骨髄腫細胞に高発現する CD38 に特異的に結合し,直接的な作用及び免疫 調節作用により高い抗腫瘍効果を示す。

1.3.2 ボルヒアルロニダーゼ アルファ

ボルヒアルロニダーゼ アルファは、皮下間隙における細胞外マトリックスの構成成分の一つで あるヒアルロン酸を加水分解することでヒアルロン酸を脱重合し、細胞外マトリックスの粘性を一 過性に低下させる。これにより、治療薬の拡散と吸収を促進する。

1.4 対象疾患

保険適用となる疾患

多発性骨髄腫 (本分析の対象とする疾患)

全身性 AL アミロイドーシス

分析対象とする疾患の疫学的性質(有病率、新規発症者数、好発年齢等)

日本における多発性骨髄腫(MM)の年間の発症率は10万人あたり約6人と推定され、2018 年の罹患推定値は7,765人である[1]。日本骨髄腫学会(旧 日本骨髄腫研究会)に属する施 設を対象にした調査研究によると、2001~2012年に診療された MM の初診時年齢の中央値 は67歳である[2]。

CancerMpact により予測される将来の MM の 5 年有病者数の推移は以下のとおりである。 5 年有病者数は過去 5 年以内に MM と診断された患者数のうち,推計対象年に生存している患 者数を示しており、5 年有病者数の推移から MM 全体における患者数の増減が予測される。MM 有病者数は今後も高齢人口の増加とともに緩徐に増加していくと考えられるものの, MM 患者は 毎年一定の患者が亡くなってしまうため、急激な増加は予測されていない[3]。

2021	2022	2023	2024	2025	2026	2027	2028	2029	2030

表 1-1 MM^{*}の5年有病者数

*ICD10のC90(多発性骨髄腫及び悪性形質細胞性新生物)のみ

- 分析対象とする疾患における当該医薬品·医療機器の使用(見込)者数 保険償還時の使用見込み数は、ピーク時市場規模予測で 6900 名である。
- 当該医薬品・医療機器を使用する患者の主な年齢(層)や性別等

国内の MM 患者集団は初診時年齢の中央値は 67 歳と比較的高齢者が多く、男性の割合が やや高いことが知られており[2]、ダラキューロ配合皮下注(Dara SC)の投与対象として想定さ れる集団も国内の MM 患者集団と年齢層および性別において同様である。

実際に、再発又は難治性の多発性骨髄腫(RRMM)患者を対象としたダラザレックス点滴静注 (Dara IV)の製造販売後特定使用成績調査[4]によると、安全性解析対象症例の患者背景は、 男性が 2000 %(2000 例)、女性が 2000 %(2000 例)であった。年齢の中央値は 2000 歳、平均値 2000 歳(範囲: 2000 歳)であり、65歳未満が 2000 %(2000 例)で あった。

1.5 使用方法等

本剤の使用方法を以下の表に示す。

表 1-2 本剤の使用方法

投与経路	皮下投与
投与方法	他の抗悪性腫瘍剤との併用
	ダラツムマブ(遺伝子組換え)として 1,800mg 及びボルヒアルロニ
1 回あたりの投与量	ダーゼ アルファ(遺伝子組換え)30,000 単位(2,000 単位
	/mL))
	以下の A 法又は B 法の投与間隔で皮下投与する。
投与頻度	A 法:1 週間間隔、2 週間間隔及び 4 週間間隔の順で投与する。
	B 法:1 週間間隔、3 週間間隔及び 4 週間間隔の順で投与する。
平均的な投与期間	疾患増悪まで継続的に使用

1.6 対象疾患の治療における当該医薬品・の位置づけ

ダラツムマブは MM 治療における有用な薬剤であり、造血幹細胞移植の適応とならない未治 療の MM(TIE NDMM)患者及び RRMM 患者に対して, 国内外の診療ガイドラインで推奨されて いる。特に国内の日本血液学会及び日本骨髄腫学会の診療ガイドラインにおいて, ダラツムマブ は TIE NDMM 患者に対する推奨治療レジメンすべてに含まれている唯一の薬剤である。

また NCCN ガイドラインでは、本剤は、すべてのダラツムマブ治療レジメンにおいて Dara IV と併記されている。国内ガイドラインにおいても、有効性を維持しつつ利便性と安全性を大きく改 善する本剤は Dara IV と同様に推奨されることが想定される。

TIE NDMM 患者及び RRMM 患者の治療における国内及び海外のガイドラインの推奨は以下のとおりである。

- 造血器腫瘍ガイドライン 2018 年版補訂版 第Ⅲ章 骨髄腫より抜粋 \triangleright 移植非適応の初発 MM の治療アルゴリズム 移植非適応の初発多発性骨髄腫(症候性) (65歳以上,重要臓器の障害あり,移植拒否) CQ1 その他の治療法 推奨治療 従来の治療: MP, CP, VAD, HDD CQ2 D-MPB 療法 (plateau phase まで継続) (9コース継続*1) 新規薬剤レジメン: D-Ld 療法 Bd, BLd*3, Td*4, MPB, Ld, MPT*4 MPL, MPTB*4, CTd*4 (18 コース以上継続*2) 奏効*5 経過観察 または 臨床試験による維持療法 【移植非適応の初発多発性骨髄腫(症候性)】 CQ1 移植非適応の多発性骨髄腫(症候性)に対する推奨治療レジメンは何か 推奨グレード:カテゴリー1
- 1.6.1 国内ガイドライン(日本血液学会)

1.6.2 国内ガイドライン(日本骨髄腫学会)

THERAPY FOR PREVIOUSLY T	REATED MULTIPLE MYELOMA ^{I,m}
Preferred Regimens • Bortezomib/lenaildomide/dexamethasone • Carfitzomib/lenaildomide/dexamethasone (category 1) ⁿ • Daratumumab/bortezomib/dexamethasone (category 1) • Daratumumab/carfitzomib/dexamethasone (category 1)	Daratumumab ^f /lenalidomide/dexamethasone (category 1) Isatuximab-irfc/pomalidomide/dexamethasone (category 1) ⁶ bxazomib/lenalidomide/dexamethasone (category 1) ⁹ Ixazomib/pomalidomide ⁶ /dexamethasone Pomalidomide ⁶ /motegomib/dexamethasone (category 1)
Other Recommended Regimens. • Belantamab mafodotin-blmf ⁴ • Bendamustine/bortezomib/dexamethasone • Bendamustine/bortezomib/dexamethasone • Bortezomib/liposomal doxorrubicin/dekamethasone (category 1) • Bortezomib/cyclophosphamide/dexamethasone • Carfitzomib/cyclophosphamide/dexamethasone • Carfitzomib/cyclophosphamide/dexamethasone • Carfitzomib/cyclophosphamide/dexamethasone • Carfitzomib/cyclophosphamide/dexamethasone • Carfitzomib/syntheside/asamethasone • Cyclophosphamide/dexamethasone • Cyclophosphamide/dexamethasone • Daratumumab ¹ /cyclophosphamide/bortezomib/dexamethasone	Daratumumab ¹ /pomalidomide ⁷ /dexamethasone Elotuzumab ¹ /bortezomib/dexamethasone (category 1) ⁿ Elotuzumab ² /lenalidomide/dexamethasone (category 1) ⁿ Elotuzumab ² /onalidomide/dexamethasone Vazomib/cyclophosphamide/dexamethasone Panobinostat ² /hortezomib/dexamethasone Panobinostat ² /bortezomib/dexamethasone Pomalidomide ⁹ /cyclophosphamide/dexamethasone Pomalidomide ⁹ /carfilzomib/dexamethasone
Useful In Certain Circumstances •Bendamustine •Bortazomib/dexamethasone (category 1) •Carfilzomib/cyclophosphamide/thalidomide/dexamethasone •Carfilzomib (weekly)/dexamethasone •Daratumumab ⁵ /* •Daratumumab ⁵ /* •Dexamethasone/cyclophosphamide/etoposide/cisplatin (DCEP) ^h •Dexamethasone/thalidomide/cisplatin/doxorubicin/cyclophosphamide/etoposide (D1-PACE)* ± bortezomib (VTD-PACE)*	High-dose cyclophosphamide Ixazomib/dexamethasone Lenalidomide/dexamethasonet (category 1) Panobinostat*//enalidomide/dexamethasone Panobinostat*/lenalidomide/dexamethasone Pomalidomide/dexamethasonet Selinexor/dexamethasonet Venetoclax/dexamethasone only for t(11;14) patients
Selected, but not inclusive of all regimens. See Supportive Care Treatment for Multiple Myeloma (MYEL-H). See Principles of Myeloma Therapy (MYEL-F). See Management of Renal Disease in Multiple Myeloma (MYEL-I). Includes both daratumumab for intravenous industria daratumumab and hyaluronidase-fhi for includes both daratumumab and hyaluronidase-fhi for subcutaneous injection has different fooling an adaratumumab for intravenous industria daratumumab and hyaluronidase-fhi for includes both daratumumab and hyaluronidase-fhi for subcutaneous injection has different fooling an adaratumumab and hyaluronidase-fhi for subcutaneous injection has different fooling an adaratumumab and hyaluronidase-fhi for subcutaneous injection. Consideration for appropriate regiments is based on the context of clinical relapse. If if a regreme listed on this page was used as a primary induction therapy and relapse is >6 mo, the same regimen may be repeated. Clinical traits with these regiments primarily included patients who were lenalidomide-naive or with lenalidomide-sensitive multiple myeloma. Indicated for the reatment of patients who have received at least two prior therapies, including lenalidomide and a proteasome inhibitor. Indicated for the reatment of patients who have received at least two prior therapies including an immunomodulatory agent and a proteasome inhibitor and who have demonstrated disease progression on or within 60 days of completion of the last therapy.	^a Indicated for patients who have received at least four prior therapies, including an anti-CD38 monoclonal antibody, a proteasome inhibitor, and an immunomodulatory agent. ^a Indicated for the treatment of patients who have received at least two prior herapies including an anti-CD38 monoclonal antibody, a proteasome inhibito. ^a Indicated outlency agent and a proteasome inhibito. ^a Indicated outlency agent and a proteasome inhibito. ^b Indicated one to three prior therapies. ^b Consider signal-signel least least we prior therapies, including a brotesome and documents with steried inhiberance. ^b Consider signal-signel least swho have received at least two prior therapies, including a proteasome inhibitor. ^b Indicated for the treatment of patients who have received at least two prior therapies, including a proteasome inhibitor. ^b Indicated for patients who have received at least four prior therapies and whose disease is refractory to at least two prior therapies in inhibitors, at least two prior therapies and whose disease is refractory to at least two prior therapies and anti-CD38 monoclonal antibody.

本剤は新たな薬理作用を有するボルヒアルロニダーゼ アルファを配合することにより, Dara IV(Dara IV:500~1000mL)と比較して投与時の液量を減らす(本剤:15mL)ことが可能とな った。これにより,本剤は短時間の皮下投与が可能となり, Dara IV と比較して投与時の容量負 荷リスク軽減が期待されるとともに, IRR 発現率が低減されることが示されている。

本剤の臨床試験では、国内外で実施された 4 試験において有効性・安全性、治療満足度スコ ア、投与時間及び IRR の発現率が評価された。第Ⅲ相試験の結果から本剤と Dara IV は有効 性において非劣性が検証された。また、安全性(特に IRR 発現率)の改善、治療満足度スコアの 改善において有用性が認められた。

IRR 発現率の臨床試験結果

MMY3012 試験ではダラツムマブ投与に伴う IRR の発現率が主要な副次評価項目で評価さ れており、IRR 発現率は Dara IV 群(34.5%)と比較して本剤群(12.7%)で有意に低かった[オ ッズ比=0.28 (95% CI: 0.18,0.44), p<0.0001]。

治療満足度スコアの臨床試験結果

MMY3012 試験では、がん治療満足度質問票改変版(改変 CTSQ)を用いて被験者の治療満 足度を患者報告アウトカムで評価した。改変 CTSQ を用いた評価では、がん治療(静脈内投与/ 皮下投与)に関する被験者満足度及び考えを調査した。がん治療の満足度に関する質問 7 項目 の総合的な平均スコアは、評価期間を通して Dara IV 群と比較して本剤群で良好であった。

加えて、Dara IV による治療は大量の輸液を用いて長時間の投与が必要であることから,初回 約7時間,2回目以降約3~4時間と長時間の投与時間が必要であり,長時間の拘束による患 者に与える身体的負担は大きい。また,投与時間の長さから入院を要することも課題とされてきた。 ダラツムマブによるMM 治療は疾患増悪まで継続し,患者によっては長期間にわたる投与が必要 であることから、実臨床上ではより簡便な治療が望まれていた。

本剤の投与時間は約3~5分となり, Dara IVと比べて大幅な投与時間の短縮が可能となる。 臨床試験では本剤と Dara IV の投与時間が評価され,本剤は Dara IV と比較して投与時間が 大幅に短縮できることが示された。また, Dara IV では輸液ポンプを用いて点滴速度を管理し,さ らに投与中に初回投与及び2回目の投与では少なくとも3回,その後の投与では少なくとも2回 点滴速度を変更する必要があり,その対応とモニタリングは医療従事者にとって負担となる。また 投与速度調整ミスによる,不適切な点滴速度での投与リスクも生じる。一方,本剤ではそれらの 必要がなく,医療従事者の負担軽減と投与速度調整ミスによる不適切な点滴速度での投与リスク が軽減できる。このように,本剤は Dara IV と比較して投与の利便性を高めることで,医療従事 者の薬剤調製負担の軽減・医療過誤の低減,医療従事者の患者ケアにかかる負担の軽減が期 待できる。

本剤が医療従事者にもたらす負担軽減は,投与に関連する医療行為の時間短縮を確認した調 査結果[5]からも示されている。本剤の国際共同第Ⅲ相試験(MMY3012 試験)に患者の組み入 れを実施した施設のうち本剤の投与経験があり、かつ本調査への参加に合意が得られた施設を 対象に、医療行為に要する時間の調査結果を実施した。その結果、医療従事者による医療行為 に要する時間に要する時間は初回投与では 63.8%, 2 回目以降では 49.5%、それぞれ短縮さ れた。患者の拘束時間は Dara IV と比較して 97%減少した。

以上より、本剤はダラツムマブの皮下投与による簡便な治療を可能とし、投与における利便性 を著しく向上させ、患者と医療従事者の双方に高い医療上の有用性をもたらすと考えられる。また、 ダラツムマブ投与のための入院によるベッドを開放できる事は、大きな医療上の有用性と考えら れる。

1.7 主な有害事象

本剤の重大な副作用として以下の副作用が該当する。

- Infusion related reaction (IRR)
- ·骨髄抑制
- ·感染症
- ・腫瘍崩壊症候群(TLS)
- ·間質性肺疾患

各事象につき、推奨されている対応方法は以下の通りである。

- Infusion related reaction
 - Infusion related reaction の管理を適切に実施できる体制下で本剤を投与する。
 - 発現した場合は、必要に応じて、本剤の中止等を含めた適切な治療を行う。
 - Infusion related reaction を軽減させるため、副腎皮質ホルモン剤、解熱鎮痛剤、抗
 ヒスタミン剤による前投与を実施する。

- ・ 遅発性の infusion related reaction(本剤投与開始から 24 時間以降に発現)を軽減 させるため、必要に応じて副腎皮質ホルモン剤等による投与後処置を実施する。
- 本剤投与中及び投与後は infusion related reaction の症状がないか十分に観察する。
- 骨髄抑制
 - ・ 関連検査値のモニタリングを実施し、好中球減少が発現した場合は、必要に応じて、本 剤の中止、併用薬剤の休薬及び減量、G-CSF治療等を考慮する。
 - ・ 関連検査値のモニタリングを実施し、血小板減少が発現した場合は、必要に応じて、本 剤の中止、併用薬剤の休薬及び減量、血小板輸血等を考慮する。
- 感染症
 - 異常が認められた場合は、必要に応じて、本剤の中止等を含めた適切な治療を行う。
- 腫瘍崩壊症候群(TLS)
 - 高腫瘍量等のハイリスク患者では適切な予防措置及び注意深いモニタリングを実施する。
- 間質性肺疾患
 - 間質性肺疾患の初期症状(息切れ、呼吸困難、咳嗽、発熱等)が発現した場合には、必要に応じて、胸部 X 線検査、胸部 CT 検査、血清マーカー等の検査を実施し、適切な処置を行う。

1.8 他国の医療技術評価機関における評価結果

医療技術評価機関における評価結果を以下に要約した。

• 表 1-3 医療技術評価機関における評価結果

国名	機関名	評価結果(記載例)	リスト価格
			(現地通貨建)
	NICE	その他(
	(TA))	<u>GBP</u>
イギリス		推奨 (Based on Abbreviated	
	SMC	submission. Reimbursed in previously	
		recommended regimen for Dara IV)	
		· SMR: Important	
フランス	HAS	· ASMR: V (vs DARA IV)	EUR
		· 効率性評価:不要	
ドイツ	IQWiG	その他(
1.4 2	(早期有)	EUR

国名	機関名	評価結果(記載例)	リスト価格
			(現地通貨建)
	用性評		
	価)		
	CADTH	その他(
カナダ	(CDR/p		CAD
	CODR)		
オーストラリ	DPAC	推奨(Based on a cost minimization	
ア	PDAC	basis with Dara IV)	AUD

また各国における医療経済評価の詳細は以下の通りであった。

• 表 1-4 医療技術評価機関における評価結果の有無

国名	機関名	評価結果の有無			
イギリス	NICE	なし			
	SMC	あり(Based on Abbreviated submission.			
		Reimbursed in previously recommended regimen			
		for Dara IV)(効率性評価:不要)			
フランス	HAS	あり(効率性評価:不要)			
ドイツ	IQWiG	なし			
カナダ	CADTH	なし			
オーストラリア	PBAC	あり(費用最小化分析)			

また評価結果の詳細は以下の通りであった。

• 表 1-5 医療技術評価機関における評価結果

国名	オーストラリア
機関名	PBAC
評価結果の URL など	https://www.pbs.gov.au/industry/listing/elements/pbac-
	meetings/psd/2021-07/files/daratumumab-psd-july-
	2021.pdf
評価対象技術	Dara SC
評価結果	推奨
条件付き推奨の場合は、	PBAC は、Dara SC が Dara IV に対して確立されている既存の構
その条件の詳細	成に追加されることが妥当であると判断した。
評価対象疾患	RRMM

	多発性骨髄腫;1種類以上の前治療ののちに再発又は難治性とな		
	った患者(すなわち、2nd line の MM 患者)。		
使用方法 (※)	Dara IV が使用されているすべての適応症のレジメンに対して;		
	・1 種類以上の前治療歴を有する MM 患者の治療を目的とした		
	Rd 併用療法又は Vd 併用療法		
	・プロテアソーム阻害薬(PI)及び免疫調節薬を含む 3 レジメン以		
	上の前治療歴を有する、又は PI 及び免疫調節薬の両方に難治性		
	の MM 患者への単剤療法		
	· VMP との併用で、新規に MM と診断され、自家幹細胞移植		
	(ASCT)に不適格な患者の治療		
比較対照	Dara IV		
主要な増分費用効果比の	Dara IV を比較対照とした費用最小化分析の結果に基づき薬価が		
值	算定された。申請者は年間コストをベースとした費用最小化分析を		
	実施し、PBAC はそれを合理的であるとみなした。分析の中で Dara		
	SC の平均投与期間は Dara IV の平均投与期間は		
	▶ と設定された。PBAC はスケジュール間のマークアップの違い		
	により若干の違いはあるものの、Dara SC は Dara IV と比較して		
	により若干の違いはあるものの、Dara SC は Dara IV と比較して 本質的にコスト中立であるとした。この勧告を行うにあたり、PBAC		
	により若干の違いはあるものの、Dara SC は Dara IV と比較して 本質的にコスト中立であるとした。この勧告を行うにあたり、PBAC は Dara SC が生活の質の改善及び利便性において Dara IV と比		

2.費用効果分析における分析条件の設定

2.1 分析対象とする集団

[主要分析]

造血幹細胞移植の適応とならない未治療の多発性骨髄腫及び再発又は難治性の多発性骨髄腫 [その他:HCPの時間的観点からの費用差]:主要分析と同じ

[その他:シナリオ分析]

再発・難治の2次治療以降の患者*

*ダラキューロ(MM)の費用対効果評価に関わる分析枠組み決定の際に、費用対効果評価専門組織において感 度分析の位置づけとして本集団に対するシナリオ分析の実施が決定した。

2.2 比較対照

[主要分析]

Dara IV

選定理由

Dara SCとDara IV の添付文書上の効能または効果、投与間隔は同一であることから、Dara IV が比較対象技術として適切である。また NCCN ガイドラインにおいても、Dara SC はすべての ダラツムマブ投与レジメンにおいて Dara SC と区別されていない。

1) Dara IV は、本剤が分析対象集団の治療に導入される時点以降で、大部分患者が本剤により置き換えられると予想される。

2) Dara IV は、本剤の国際共同第Ⅲ相ランダム化比較試験における対照薬であり、薬理作用 は同一である。また薬価算定における最類似薬である。

3) ダラツムマブは MM 治療における有用な薬剤であり、TIE NDMM 患者及び RRMM 患者に 対して、国内外の診療ガイドラインで推奨されている。TIE NDMM 患者に対して、ダラツムマブ は、日本血液学会及び日本骨髄腫学会の診療ガイドラインにおいて推奨治療レジメンすべてに含 まれている唯一の薬剤である。RRMM 患者に対してダラツムマブは、日本血液学会の診療ガイド ラインにおいて、より良好な転機をもたらすとして、カテゴリー1 のエビデンスで裏付けられた推奨 レジメンである。また、NCCN ガイドラインでは、ダラツムマブは、NCCN ガイドラインのカテゴリー 1 のエビデンスで裏付けられた推奨レジメンとして臨床現場で使用されている。本剤は、すべての ダラツムマブ治療レジメンにおいて Dara IV と併記されている。国内ガイドラインにおいても、有 効性を維持しつつ利便性と安全性を大きく改善する本剤は Dara IV と同様に推奨されることが想 定される。

[その他: HCP の時間的観点からの費用差]: 主要分析と同じ

[その他:シナリオ分析]

費用対効果評価専門組織において「最も費用対効果のよい治療法」を選択し RRMM 患者におけ る分析の比較対照とすることが決定された。本決定について弊社と C2H による議論の上、Vd お

18

よび Rd を比較対照とすることが合意された。

選定理由

弊社が実施した MDV データベースを使用した MM の治療パターン分析(一部の結果を第46回 日本骨髄腫学会学術集会において発表した[6])において、RRMM における 2 次治療の各治療 法の頻度と割合を集計し、Vd および Rd の 2 つの治療法は広く一般的に使用されていると考え られた。またこの 2 つの治療法は他の HTA 評価国で広く償還されており、その費用対効果は十 分に確立されていると考えられる。

2.3 分析の立場と費用の範囲

ガイドラインの原則に基づき、分析の立場は公的医療の立場、費用の範囲は公的医療費とした。 その他の分析における除外:HCP の時間的観点からの費用差の分析は、HCP の時間的観点か ら費用差を検討するために実施した。

2.4 効果指標

[主要分析]

費用最小化分析:有効性が同等であると仮定して、費用による比較を行った。

[その他:HCP の時間的観点からの費用差] なし(費用のみ)

[その他:シナリオ分析]

費用効用分析:ガイドラインの原則に基づき、効果指標は QALY とした。

2.5 分析期間

[主要分析]

費用最小化分析:弊社が実施し第46回日本骨髄腫学会学術集会において発表した MDV データ ベース(2019 年 8 月データ)を使用した MM の治療パターン分析と同様の解析を MDV データベ ース(2021 年 5 月データ)に対して行い、Dara IV の平均投与期間を集計したところ、TIE NDMM と RRMM においてそれぞれ 32 週間であった。Dara SC の実際の投与期間はデータか ら得られなかったため、Dara SC と Dara IV の投与期間は同じであると仮定した。以上より、分 析期間は 32 週間、また感度分析として分析期間を 52 週間(1 年)とした分析を実施した。 [その他:HCP の時間的観点からの費用差]

患者あたりの薬剤投与のための来院

[その他:シナリオ分析]

費用効用分析:生涯(30年)

2.6 割引率

[主要分析]

費用最小化分析:32週間および1年間の分析であるため割引を行わなかった。

[その他:HCP の時間的観点からの費用差]

なし(分析期間≤1年)

[その他:シナリオ分析]

費用効用分析:ガイドラインの原則に基づき、割引率は、費用、効果共に年率2%とした。

2.7	分析条件の設定の要約
-----	------------

	主要分析	その他:HCP の時間的観点からの
		費用差
分析対象とする集	造血幹細胞移植の適応とならない	造血幹細胞移植の適応とならない未
団	未治療の多発性骨髄腫及び再発	治療の多発性骨髄腫及び再発又は
	又は難治性の多発性骨髄腫(TIE	難治性の多発性骨髄腫(TIE
	NDMM & RRMM)	NDMM & RRMM)
比較対照	Dara IV	Dara IV
比較対照を選定し	Dara SCとDara IVの添付文書	Dara SCとDara IV の添付文書
た理由	上の効能または効果、投与間隔は	上の効能または効果、投与間隔は
	同一であることから、Dara IV が	同一であることから、Dara IV が比
	比較対照技術として適切である。	較対照技術として適切である。また
	また NCCN ガイドラインにおいて	NCCN ガイドラインにおいても、
	も、Dara SC はすべてのダラツム	Dara SC はすべてのダラツムマブ
	マブ投与レジメンにおいて Dara	投与レジメンにおいて Dara SC と
	SC と区別されていない。	区別されていない。
分析の立場と費	公的医療の立場	HCP の時間的観点
用の範囲	公的医療費のみ	
効果指標	公的医療費	なし(時間および費用のみ)
分析期間	主要分析: 32 週間	患者あたりの薬剤投与のための来
	感度分析:52 週間	院
割引率	なし	なし

	その他:シナリオ分析
分析対象とする集	再発又は難治性の多発性骨髄腫(RRMM)
団	
比較対照	Vd 及び Rd

	その他:シナリオ分析
比較対照を選定し	費用対効果評価専門組織において「最も費用対効果のよい治療法」を選
た理由	択し RRMM 患者における分析の比較対照とすることが決定された。本決
	定について弊社とC2Hによる議論の上、VdおよびRdを比較対照とす
	ることが合意された。
	この2つの治療法は広く一般的に使用されていると考えられた。またこの
	2 つの治療法は他の HTA 評価国で広く償還されており、その費用対効果
	は十分に確立されていると考えられる。
分析の立場と費	公的医療の立場
用の範囲	公的医療費のみ
効果指標	QALY、生存年
分析期間	生涯(30年)
割引率	費用・効果ともに年率 2%

3. Additional Benefits

3.1 Clinical Questions

A systematic literature review (SLR) of randomized clinical trials (RCTs) to examine additional benefit of daratumumab subcutaneous injection (Dara SC) among multiple myeloma patients with transplant ineligible newly diagnosed multiple myeloma (TIE NDMM) and relapsed or refractory multiple myeloma (RRMM) was conducted based on the research questions.

As agreed by expert committee meeting (on 27th August, 2021), the main analysis will focus on the target population of patients with multiple myeloma (including TIE NDMM and RRMM). The intervention is Dara SC and the comparator is daratumumab intravenous infusion (Dara IV).

Separately, other analysis was requested to focusing on RRMM patients and the comparator are set to be bortezomib in combination with dexamethasone (Vd) and lenalidomide in combination with dexamethasone (Rd). After initial search, a study was identified to directly comparing DARA SC and DARA IV, however, there were no study identified directly comparing Dara SC with other selected comparators. The search was therefore broadened to include Dara IV assuming similar efficacy between Dara IV and SC based on the main analysis.

For each of the two research questions, a search strategy was developed using the designated databases. The outcomes were efficacy, safety and patient reported outcome (PRO). The time frame of the systematic literature search was from 1st January 2011 to 31st October 2021 for the main analysis and scenario analysis as presented in Table 3-1 and Table 3-2.

Item	Description		
Population	Multiple myeloma (including transplant ineligible		
	NDMM and RRMM)		
Intervention	Daratumumab SC		
Comparator	Daratumumab IV		
Outcome	Efficacy (ORR, PFS, OS)		
	Safety		
	• HRQoL		
Study design	Randomized controlled trial		
Literature search period	1 st January 2011 to 31 st October 2021		

• Table 3-1 Research questions of systematic review – main analysis

HRQoL: health-related quality of life; IV: intravenous; NDMM: newly diagnosed multiple

myeloma; ORR: overall response rate; OS: overall survival; PFS: progression-free survival; Rd: Revlimid (Lenalidomide) + Dexamethasone; RRMM: relapsed refractory multiple myeloma; SC: subcutaneous; Vd: Velcade (Bortezomib) + Dexamethasone

Item	Description		
Population	RRMM (1L+)		
Intervention Daratumumab (SC and IV*)			
Comparator	Vd and Rd		
Outcome	Efficacy (ORR, PFS, OS)		
	Safety		
	HRQoL		
Study design	Randomized controlled trial		
Literature search period	1 st January 2011 to 31 st October 2021		

Table 3-2 Research questions of systematic review – scenario analysis

1L: first line of treatment; HRQoL: health-related quality of life; IV: intravenous; ORR: overall response rate; OS: overall survival; PFS: progression-free survival; Rd: Revlimid (Lenalidomide) + Dexamethasone; RRMM: relapsed refractory multiple myeloma; SC: subcutaneous; Vd: Velcade (Bortezomib) + Dexamethasone

* As there were no study identified comparing Dara SC with the comparator. The search was therefore broadened to include Dara IV assuming similar efficacy between Dara IV and SC.

3.2 Systematic Review

3.2.1 Implementation flow

In the literature search process, an expert of literature search developed the search formula by combining conditions for disease name, drug name, study design, and search period. Screening based on publication abstracts and the following operation to identify relevant RCTs for the evaluation of additional benefit were performed with blinding by two independent reviewers. Inclusion or exclusion of publications was determined based on the prespecified criteria. Those eligible for inclusion were selected for full text screening and independent review. Discrepancies were resolved by involving a third investigator and reaching consensus. Articles meeting criteria at the full-text stage were included in the analysis. Publications and conference abstracts were selected for extracting the relevant data including the post hoc, updated and subgroup analyses. The RCTs identified were summarized in a table form with a summary of results.

3.2.2 Inclusion and exclusion criteria

The key inclusion and exclusion criteria for the SLR are presented as follows.

3.2.2.1 Inclusion criteria

- The target disease is patients with transplant ineligible NDMM or RRMM for the main analysis and RRMM patients for the scenario analysis.
- The intervention is Dara SC (for scenario analysis, at the initial search, we set the intervention as Dara SC; since, no study was found initially, the search was broadened to include Dara IV assuming similar efficacy between Dara IV and SC).
- The comparator is Dara IV for the main analysis and Rd and Vd for the scenario analyses.
- The study design is randomized controlled trial.
- Published during the designated period (1st January 2011 to 31st October 2021).

3.2.2.2 Exclusion criteria

- Meeting minutes or conference details
- Not written in English or Japanese

3.2.3 Database

PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), Ichushi-Web, J-stage and ClinicalTrials.gov were used for collection of the target studies.

3.2.3.1 Search formula

Main analysis

The search formulas for the SLR for main analysis are presented as follows, which compared Dara SC and Dara IV.

Search formula for PubMed

Date of search: November 02, 2021

#1. (((multiple myelomas[MeSH Terms]) OR ("multiple myeloma")) OR (myeloma-multiple)) OR ("myeloma multiple")

#2. (#1) NOT ("transplant-eligible" OR "AL amyloidosis" OR "before and after autologous stem-cell transplantation " OR "triple-class refractory multiple

myeloma" OR "smoldering multiple myeloma")

#3. ((Daratumumab[Title/Abstract]) AND (subcutaneous[Title/Abstract])) OR (DARA-SC OR "DARA SC" OR DARZQURO)

#4. ((Daratumumab[Title/Abstract]) AND (intravenous[Title/Abstract])) OR (DARA-IV[Title/Abstract] OR "DARA IV"[Title/Abstract] OR DARZALEX[Title/Abstract])

#5. ((Randomized Controlled Trial[Publication Type]) OR ((randomized[Title] OR randomised)[Title] AND (trial[Title] OR trials)[Title])) OR (randomized controlled trials as topic[MeSH Terms])

#6. #2 AND #3 AND #4 AND #5

#7. #2 AND #3 AND #4 AND #5: Filter 2011 to 2021

Number of publications: 05

Search formula for Embase and Cochrane

Date of search: November 02, 2021

#1. ("multiple myelomas" or "multiple myeloma" or myeloma-multiple or "myeloma multiple").mp.

#2. ("transplant-eligible" or "AL amyloidosis" or "before and after autologous stem-cell transplantation " or "triple-class refractory multiple myeloma" or "smoldering multiple myeloma").mp.

#3. 1 not 2

#4. ((Daratumumab and subcutaneous) or (DARA-SC or "DARA SC" or DARZQURO)).ti,ab.

#5. ((Daratumumab and intravenous) or (DARA-IV or "DARA IV" or DARZALEX)).ti,ab.

#6. ("Randomized Controlled Trial" or ((randomized or randomized) and (trial or trials)) or randomized controlled trials).ti,ab.

#7. 3 and 4 and 5 and 6

#8. remove duplicates from 7

Number of publications: 14

Search formula for Ichushi Web, J-stage and Clinical trials.gov

Date of search: November 02, 2021

Used keyword: "Daratumumab"

Number of publications

- Ichushi Web: 302
- J-stage: 122
- Clinical Trials.gov: 184

Scenario analysis – initial search

The search formulas for the SR for scenario analysis comparing Dara SC with Rd and Vd are presented as follows.

Search formula for PubMed

Date of search: November 02, 2021

#1. (((multiple myelomas[MeSH Terms]) OR ("multiple myeloma")) OR (myeloma-multiple)) OR ("myeloma multiple")

#2. (#1) NOT ("transplant-eligible" OR "AL amyloidosis" OR "before and after autologous stem-cell transplantation " OR "triple-class refractory multiple myeloma" OR "smoldering multiple myeloma")

#3. ((Daratumumab[Title/Abstract]) AND (subcutaneous[Title/Abstract])) OR (DARA-SC OR "DARA SC" OR DARZQURO)

#4. ((Bortezomib OR Velcade) AND Dexamethasone) OR ((Lenalidomide OR Revlimid) AND Dexamethasone)

#5. ((Randomized Controlled Trial[Publication Type]) OR ((randomized[Title] OR randomised)[Title] AND (trial[Title] OR trials)[Title])) OR (randomized controlled trials as topic[MeSH Terms]) #6. #2 AND #3 AND #4 AND #5

Number of publications: 0

Search formula for Embase and Cochrane

Date of search: November 02, 2021

#1. ("multiple myelomas" or "multiple myeloma" or myeloma-multiple or "myeloma multiple").mp.

#2. ("transplant-eligible" or "AL amyloidosis" or "before and after autologous stem-cell transplantation " or "triple-class refractory multiple myeloma" or "smoldering multiple myeloma").mp.

#3. 1 not 2

#4. ((Daratumumab and subcutaneous) or (DARA-SC or "DARA SC" or DARZQURO)).ti,ab.

#5. ((Bortezomib or Velcade) and Dexamethasone).mp. or ((Lenalidomide or Revlimid) and Dexamethasone).ti,ab.

#6. ("Randomized Controlled Trial" or ((randomized or randomized) and (trial or trials)) or randomized controlled trials).ti,ab.

#7. 3 and 4 and 5 and 6

#8. remove duplicates from 7

Number of publications: 9 (*NONE* of the records are relevant to inclusion criteria after checking)

Search formula for Ichushi Web, J-stage and Clinical trials.gov

Date of search: November 02, 2021

Used keyword: "Daratumumab"

Number of publications:

- Ichushi Web: 302
- J-stage: 122

• Clinical Trials.gov: 184

(NONE of the records are relevant to inclusion criteria after checking)

Since no studies met the inclusion criteria comparing Dara SC with the comparators (Rd and Vd), the search was extended to include Dara IV.

Scenario analysis – the extended search

The search formulas for the SR for scenario analysis comparing Dara IV with Rd and Vd are presented below.

Search formula for PubMed

Date of search: November 02, 2021

#1. (((multiple myelomas[MeSH Terms]) OR ("multiple myeloma")) OR (myeloma-multiple)) OR ("myeloma multiple")

#2. (#1) NOT ("transplant-eligible" OR "AL amyloidosis" OR "before and after autologous stem-cell transplantation " OR "triple-class refractory multiple myeloma" OR "smoldering multiple myeloma")

#3. Daratumumab[Title/Abstract]

#4. ((Bortezomib OR Velcade) AND Dexamethasone) OR ((Lenalidomide OR Revlimid) AND Dexamethasone)

#5. ((Randomized Controlled Trial[Publication Type]) OR ((randomized[Title] OR randomised)[Title] AND (trial[Title] OR trials)[Title])) OR (randomized controlled trials as topic[MeSH Terms])

#6. #2 AND #3 AND #4 AND #5

#7. #2 AND #3 AND #4 AND #5: Filter 2011 to 2021

Number of publications: 47

Search formula for Embase and Cochrane

Date of search: November 02, 2021

#1. ("multiple myelomas" or "multiple myeloma" or myeloma-multiple or

"myeloma multiple").mp.

#2. ("transplant-eligible" or "AL amyloidosis" or "before and after autologous stem-cell transplantation " or "triple-class refractory multiple myeloma" or "smoldering multiple myeloma").mp.

#3. 1 not 2

#4. Daratumumab.ti,ab.

#5. ((Bortezomib or Velcade) and Dexamethasone).mp. or ((Lenalidomide or Revlimid) and Dexamethasone).ti,ab.

#6. ("Randomized Controlled Trial" or ((randomized or randomized) and (trial or trials)) or randomized controlled trials).ti,ab.

#7. 3 and 4 and 5 and 6

#8. Remove duplicates from 7

Number of publications: 131

Search formula for Ichushi Web, J-stage and Clinical trials.gov

Date of search: November 02, 2021

Used keyword: "Daratumumab"

Number of publications: two records were found to be relevant as per inclusion criteria

- Ichushi Web: 302
- J-stage: 122
- Clinical Trials.gov: 184

3.2.4 Conference search

The search also included the following conference proceedings:

- American Society for Clinical Oncology (ASCO);
- American Association for Cancer Research (AACR);
- European Society of Medical Oncology (ESMO);

- European Hematology Association (EHA);
- Japanese Society of Hematology (JSH) and
- Japanese Society of Medical Oncology (JSMO).

3.2.5 Search results

The results of the SLR were summarized as shown in Figure 3-1 and Figure 3-2 with reference to the flow chart recommended by PRISMA Statement.

• Figure 3-1 PRISMA statement for the main analysis

AACR: American Association for Cancer Research; ASCO: American Society of Clinical Oncology; EHA: European Hematology Association; ESMO: European Society for Medical Oncology; IMS: International Myeloma Society; JSH: Japanese Society of Hematology; JSMO: Japanese Society of Medical Oncology

Figure 3-2 PRISMA statement for the scenario analysis

AACR: American Association for Cancer Research; ASCO: American Society of Clinical Oncology; EHA: European Hematology Association; ESMO: European Society for Medical Oncology; IMS: International Myeloma Society; JSH: Japanese Society of Hematology; JSMO: Japanese Society of Medical Oncology

3.2.6 Listing of clinical studies identified

• Table 3-3 List of identified clinical studies – Main analysis: COLUMBA; scenario analysis: CASTOR, LEPUS and POLLUX

Clinical	Intervention	Comparator	Sample size	Statistics	Primary
study					analysis
					publication
Main analys	is				
COLUMBA	Dara SC	Dara IV	• Dara SC: n=263	The Kaplan-Meier method was used to	Mateos et. al.
			• Dara IV: n=259	estimate time-to-event distributions.	2020[7]
				Hazard ratios and 95% CIs were	
				estimated using a stratified Cox	
				proportional hazards regression model.	
Scenario an	alysis*				
CASTOR	Dara IV + Vd	Vd	• Dara IV + Vd:	The log-rank test method was used to	Palumbo et. al.
			n=251	compared both groups.	2016[8]
			• Vd: n=247	Hazard ratios and 95% CIs were	
				estimated using a stratified Cox	
				proportional hazards regression model.	
				The Kaplan–Meier method was used to	
				estimate the distributions.	
				A stratified Cochran–Mantel–Haenszel	
				chi-square test was used to test	
				between-group differences in the	

Clinical	Intervention	Comparator	Sample size	Statistics	Primary
study					analysis
					publication
				overall response rate.	
LEPUS	Dara IV+ Vd	Vd	• Dara IV + Vd:	The Kaplan–Meier method was used to	Lu et. al.
			n=141	estimate the distributions.	2021[9]
			• Vd: n=70	A stratified Cox regression model with	
				treatment as the sole explanatory	
				variable was used to estimate HRs and	
				95% confidence intervals.	
				A stratified Cochran–Mantel–Haenszel	
				chi-square test was used to measure	
				treatment differences in the overall	
				response rate, ≥very good partial	
				response rate, and \geq CR rate.	
POLLUX	Dara IV + Rd	Rd	• Dara IV + Rd:	Stratified log-rank test method was	Dimopoulos et.
			n=286	used to compared both groups.	al. 2016[10]
			• Rd: n=283	Hazard ratios and 95% confidence	
				intervals were estimated with the use	
				of a Cox regression model, with	
				treatment as the sole explanatory	
				variable.	

Clinical study	Intervention	Comparator	Sample size	Statistics	Primary analysis publication
				Cochran–Mantel–Haenszel tests were	
				used to compare overall response rates,	
				rates of very good partial response or	
				better, and other binary end points.	

Dara: daratumumab; IV: intravenous; Rd: Revlimid + dexamethasone; SC: subcutaneous; Vd: Velcade + dexamethasone

* As there were no study identified comparing Dara SC with the comparator. The search was broadened to include Dara IV assuming similar

efficacy between Dara IV and SC.

3.2.7 Summary of additional benefit assessment

3.2.7.1 Main analysis

COLUMBA clinical trial

The methodology of the systematic review performed to examine additional benefit of daratumumab was generally appropriate. Through the systematic review, following publications related to the RCTs to evaluate the efficacy and safety of daratumumab were identified. Publications (1), (2) and (3) were original articles identified from databases and were associated with COLUMBA trial. Publication (4) was identified through grey literature search. Publications (5) to (9) were records of presentation at scientific meetings.

- (1) Mateos MV, Nahi H, Legiec W, et. al. Subcutaneous versus intravenous daratumumab in patients with relapsed or refractory multiple myeloma (COLUMBA): a multicentre, open-label, non-inferiority, randomised, phase 3 trial. Lancet Haematol. 2020 May;7(5):e370-e380. doi: 10.1016/S2352-3026(20)30070-3.[7]
- Usmani SZ, Mateos MV, Hungria V, et. al. Greater treatment satisfaction in patients receiving daratumumab subcutaneous vs. intravenous for relapsed or refractory multiple myeloma: COLUMBA clinical trial results. J Cancer Res Clin Oncol. 2021 Feb;147(2):619-631. doi: 10.1007/s00432-020-03365-w.[11]
- (3) Iida S, Ishikawa T, Min CK, et. al. Subcutaneous daratumumab in Asian patients with heavily pretreated multiple myeloma: subgroup analyses of the noninferiority, phase 3 COLUMBA study. Ann Hematol. 2021 Apr; 100(4): 1065-1077. doi: 10.1007/s00277-021-04405-2.[12]
- (4) Slavcev M, Spinelli A, Absalon E, Masterson T, Heuck C, Lam A, De Cock E. Results of a Time and Motion Survey Regarding Subcutaneous versus Intravenous Administration of Daratumumab in Patients with Relapsed or Refractory Multiple Myeloma. Clinicoecon Outcomes Res. 2021 Jun 8;13:465-473. doi: 10.2147/CEOR.S302682.[5]
- (5) Mateos MV, Usmani SZ, Grosicki S, et. al. Randomized, Open-Label, Non-Inferiority, Phase 3 Study of Subcutaneous (SC) Versus Intravenous (IV) Daratumumab (DARA) Administration in Patients (Pts) with Relapsed or Refractory Multiple Myeloma (RRMM): Body Weight Subgroup Analysis of Columba. Abstract presented at 61st ASH Annual Meeting. Orlando United States. 134(Supplement 1) (pp 1906), 2019.[13]
- (6) Usmani SZ, Mateos MV, Nahi H, et. al. Randomized, Open-Label, Non-Inferiority, Phase 3 Study of Subcutaneous (SC) Versus Intravenous (IV) Daratumumab (DARA) Administration in Patients with Relapsed or Refractory Multiple Myeloma: Columba Update. Abstract presented at 61st ASH Annual Meeting. Orlando United States. 134(Supplement 1) (pp 1865), 2019. [14]
- (7) Kaiser M, Mateos MV, Usmani SZ, Phase 3, open-label, non-inferiority study of subcutaneous versus intravenous daratumumab in patients with relapsed or refractory multiple myeloma: Body weight subgroup analysis of Columba. Abstract presented at 60th Annual Scientific Meeting of the British Society for Haematology. Birmingham United Kingdom. 189(Supplement 1) (pp 22), 2020.[15]
- (8) Mateos MV, Nahi H, Legiec W, et. al. Efficacy and safety of the randomized, open-label, non-inferiority, phase 3 study of subcutaneous (SC) versus intravenous (IV) daratumumab (DARA) administration in patients (pts) with relapsed or refractory multiple myeloma (RRMM): COLUMBA. Annual Meeting of the American Society of Clinical Oncology, ASCO 2019. Chicago, IL United States. 37(Supplement 15) (no pagination), 2019.[16]
- (9) Mateos MV, Nahi H, Legiec W, et. al. Randomized, open-label, noninferiority, phase 3 study of subcutaneous (SC) versus intravenous (IV) daratumumab (DARA) administration in patients with relapsed or refractory multiple myeloma: COLUMBA. Presented at European Hematology Association (EHA), 2019.[17]

The following outcome measures were used for the evaluation of additional benefit:

- Primary outcomes: Overall response
- Secondary outcomes: PFS, OS, PRO, and IRR

3.2.7.2 Scenario analysis

CASTOR clinical trial

Publications (1) was identified as a primary analysis of CASTOR clinical trial and publications (2) to (5) were supporting original articles reporting data for extended follow-up, subgroup analyses and quality of life. Publications (6) and (7) were records of abstract presentation at ASH and EHA conferences, respectively.

- (1) Palumbo A, Chanan-Khan A, Weisel K, et. al. Daratumumab, Bortezomib, and Dexamethasone for Multiple Myeloma. N Engl J Med. 2016 Aug 25; 375(8):754-66. doi: 10.1056/NEJMoa1606038.[8]
- (2) Mateos MV, Sonneveld P, Hungria V, et. al. Daratumumab, Bortezomib, and Dexamethasone Versus Bortezomib and Dexamethasone in Patients With Previously Treated Multiple Myeloma: Three-year Followup of CASTOR. Clin Lymphoma Myeloma Leuk. 2020 Aug; 20(8): 509-518. doi: 10.1016/j.clml.2019.09.623.[18]
- (3) Spencer A, Lentzsch S, Weisel K, et. al. Daratumumab plus bortezomib and dexamethasone versus bortezomib and dexamethasone in relapsed or refractory multiple myeloma: updated analysis of CASTOR. Haematologica. 2018 Dec; 103(12): 2079-2087. doi: 10.3324/haematol.2018.194118.[19]
- (4) Weisel K, Spencer A, Lentzsch S, et. al. Daratumumab, bortezomib, and dexamethasone in relapsed or refractory multiple myeloma: subgroup analysis of CASTOR based on cytogenetic risk. J Hematol Oncol. 2020 Aug 20;13(1):115. doi: 10.1186/s13045-020-00948-5.[20]

- (5) Hungria V, Beksac M, Weisel KC, et. al. Health-related quality of life maintained over time in patients with relapsed or refractory multiple myeloma treated with daratumumab in combination with bortezomib and dexamethasone: results from the phase III CASTOR trial. Br J Haematol. 2021 May; 193(3):561-569. doi: 10.1111/bjh.17321.[21]
- (6) Weisel KC, Sonneveld P, Mateos MV et. al. Efficacy and Safety of Daratumumab, Bortezomib, and Dexamethasone (D-Vd) Versus Bortezomib and Dexamethasone (Vd) in First Relapse Patients (pts) with Multiple Myeloma (MM): Four-Year Update of CASTOR. Presented at American Society of Hematology (ASH), 2019.[22]
- (7) Weisel K, Spencer A, Lentzsch S, et. al. Efficacy and safety of daratumumab, bortezomib, and dexamethasone (D-Vd) in relapsed or refractory multiple myeloma (RRMM): Updated subgroup analysis of CASTOR based on cytogenetic risk. Presented at European Hematology Association (EHA), 2019.[23]

The manufacturer used the following outcome measures for the evaluation of additional benefit:

- Primary outcomes: PFS
- Secondary outcomes: ORR, OS, safety and HRQoL

LEPUS clinical trial

One publication was identified associated with LEPUS (MMY3009) clinical trial reporting data for daratumumab plus bortezomib and dexamethasone. LEPUS study was conducted to confirm that DVd demonstrates similar efficacy and safety in Chinese patients with RRMM compared with the global phase 3 CASTOR.

(1) Lu J, Fu W, Li W, et. al. Daratumumab, bortezomib, and dexamethasone versus bortezomib and dexamethasone in Chinese patients with relapsed or refractory multiple myeloma: Phase 3 LEPUS (MMY3009) study. Clin Lymphoma Myeloma Leuk. 2021 Sep; 21(9):e699-e709. doi: 10.1016/j.clml.2021.04.012.[9]

The manufacturer used the following outcome measures for the evaluation of additional benefit:

- Primary outcomes: PFS
- Secondary outcomes: ORR, OS, and safety

POLLUX clinical trial

Publications (1) was identified as a primary analysis of POLLUX clinical trial and publications (2) to (6) were supporting original articles reporting data for extended follow-up, subgroup analyses and quality of life. Publications (7), (8) and (9) were records of abstract presentation at ASH, 2019 and EHA, 2019 conferences.

- (1) Dimopoulos MA, Oriol A, Nahi H, et. al. Daratumumab, Lenalidomide, and Dexamethasone for Multiple Myeloma. N Engl J Med. 2016 Oct 6;375(14):1319-1331. doi: 10.1056/NEJMoa1607751.[10]
- (2) Bahlis NJ, Dimopoulos MA, White DJ, et. al. Daratumumab plus lenalidomide and dexamethasone in relapsed/refractory multiple myeloma: extended follow-up of POLLUX, a randomized, open-label, phase 3 study. Leukemia. 2020 Jul; 34(7): 1875-1884. doi: 10.1038/s41375-020-0711-6.[24]
- (3) Kaufman JL, Dimopoulos MA, White D, et. al. Daratumumab, lenalidomide, and dexamethasone in relapsed/refractory myeloma: a cytogenetic subgroup analysis of POLLUX. Blood Cancer J. 2020 Nov 3;10(11):111. doi: 10.1038/s41408-020-00375-2.[25]
- (4) Dimopoulos MA, San-Miguel J, Belch A, et. al. Daratumumab plus lenalidomide and dexamethasone versus lenalidomide and dexamethasone in relapsed or refractory multiple myeloma: updated analysis of POLLUX. Haematologica. 2018 Dec;103(12):2088-2096. doi: 10.3324/haematol.2018.194282.[26]

- (5) Suzuki K, Dimopoulos MA, Takezako N, et. al. Daratumumab, lenalidomide, and dexamethasone in East Asian patients with relapsed or refractory multiple myeloma: subgroup analyses of the phase 3 POLLUX study. Blood Cancer J. 2018 May 1;8(4):41. doi: 10.1038/s41408-018-0071-x.[27]
- (6) Plesner T, Dimopoulos MA, Oriol A, et al. Health-related quality of life in patients with relapsed or refractory multiple myeloma: treatment with daratumumab, lenalidomide, and dexamethasone in the phase 3 POLLUX trial. Br J Haematol . 2021 Jul;194(1):132-139. doi: 10.1111/bjh.17435.[28]
- (7) Kaufman JL, Usmani SZ, San-Miguel J, et. al. Four-Year Follow-up of the Phase 3 Pollux Study of Daratumumab Plus Lenalidomide and Dexamethasone (D-Rd) Versus Lenalidomide and Dexamethasone (Rd) Alone in Relapsed or Refractory Multiple Myeloma (RRMM). Abstract presented at 61st ASH Annual Meeting. Orlando United States. 134(Supplement 1) (pp 1866), 2019.[29]
- (8) Bahlis N, Dimopoulos MA, White DJ, et al. Three-Year Follow up of the Phase 3 POLLUX Study of Daratumumab Plus Lenalidomide and Dexamethasone (D-Rd) Versus Lenalidomide and Dexamethasone (Rd) Alone in Relapsed or Refractory Multiple Myeloma (RRMM). Presented at American Society of Hematology (ASH), 2019.[30]
- (9) Dimopoulos MA, San-Miguel J, White D, et. al. Efficacy and safety of daratumumab, lenalidomide, and dexamethasone (D-Rd) in relapsed or refractory multiple myeloma (RRMM): updated subgroup analysis of POLLUX based on cytogenetic risk. Presented at European Hematology Association (EHA), 2019.[31]

The manufacturer used the following outcome measures for the evaluation of additional benefit:

• Primary outcomes: PFS

Secondary outcomes: ORR, OS and HRQoL

3.2.8 Detailed table of clinical trials

A summary of one clinical trial (COLUMBA) that was relevant to the research questions for the main analysis is provided in Table 3-4.

For scenario analysis, three clinical trials were identified (CASTOR, LEPUS and POLLUX) from the searches and the extracted data is reported in Table 3-5. POLLUX study compared addition of daratumumab with lenalidomide and dexamethasone to lenalidomide and dexamethasone, whereas CASTOR and LEPUS studies compared addition of daratumumab with bortezomib and dexamethasone to bortezomib and dexamethasone alone.

3.2.8.1 Main analysis

Study name	COLUMBA study			
Bibliographic	Mateos MV, Nahi H, Legiec W, Grosicki S, Vorobyev			
information	V, Spicka I, Hungria V, Korenkova S, Bahlis N,			
	Flogegard M, Bladé J. Subcutaneous versus			
	intravenous daratumumab in patients with relapsed			
	or refractory multiple myeloma (COLUMBA): a			
	multicentre, open-label, non-inferiority,			
	randomised, phase 3 trial. The Lancet			
	Haematology. 2020 May 1;7(5):e370-80.[7]			
Clinicaltrials.gov	NCT03277105			
registry information				
Study sites	Multicenter (147 sites in 18 countries)			
Study enrollment	October 31, 2017 to December 27, 2018			
period				
Target population	Recruited patients with RRMM who had received at			
	least three previous lines of therapy and had			
	evidence of response to at least one previous			
	treatment regimen.			
Eligibility criteria	 Eligible patients were aged ≥18 years. 			
	Patients had a documented diagnosis of			
	multiple myeloma according to the			
	International Myeloma Working Group			

• Table 3-4 List of literature for main analysis – COLUMBA study

	(IMWG) diagnostic criteria.
	 Patients with relapsed or refractory multiple
	myeloma had received at least three
	previous lines of therapy, including a
	proteasome inhibitor and an
	immunomodulatory drug, or were double
	refractory to both a proteasome inhibitor and
	an immunomodulatory drug.
	Patients had evidence of response to at least
	one previous treatment regimen.
	 Pretreatment clinical laboratory values
	during the screening phase were required to
	show adequate bone marrow, liver, and
	kidney function.
	 Women of childbearing potential had to
	agree to use two methods of birth control at
	least 4 weeks before first treatment dose
	and had to have a negative pregnancy test 2
	weeks before randomization.
Key exclusion	 Previous treatment with daratumumab or
criteria	other anti-CD38 therapies.
	 Anti-myeloma treatment within 2 weeks or
	five pharmacokinetic half-lives before
	randomization.
	Receipt of an autologous stem cell transplant
	within 12 weeks before randomization.
	 Malignancies other than multiple myeloma,
	unless all treatment of that malignancy had
	been completed at least 2 years before
	consent and the patient had no evidence of
	the disease.
	 Meningeal involvement of the myeloma.
	Chronic obstructive pulmonary disease with a
	forced expiratory volume in 1 s of less than

	50% of the predicted normal.			
	Moderate or severe persistent asthma or a			
	history of asthma within the last 2 years.			
	Clinically significant cardiac disease.			
	 Seropositivity for HIV, hepatitis B, or 			
	hepatitis C.			
	 Known allergies to study-relevant 			
	compounds and any other conditions that			
	might interfere with the study protocol.			
Details of	Dara SC group (n=263)			
interventional	Dosing: 1800 mg of daratumumab co-			
method	formulated with rHuPH20 2000 U/mL.			
	Patients received daratumumab once weekly (cycles			
	1 and 2), every 2 weeks (cycles 3-6), and then			
	every 4 weeks (28-day cycles).			
Details of	Dara IV group (n=259)			
comparators	Dosing: 16 mg/kg of daratumumab			
	Patients received daratumumab once weekly (cycles			
	1 and 2), every 2 weeks (cycles 3–6), and then			
	every 4 weeks (28-day cycles).			
Study design	Randomized, phase 3 trial			
	Randomization was stratified based on baseline			
	bodyweight, previous therapy lines, and myeloma			
	type (IgG vs non-IgG).			
Blinding method	Open label			
Primary endpoint	Overall response (partial response or better)			
Key secondary	Proportion of patients with very good partial			
endpoints	response or better.			
	Proportion of patients with complete			
	response or better			
	Time to response			
	Duration of response			
	Progression-free survival			
	Overall survival			

	Time to next therapy		
	Patient reported treatment satisfaction		
	 Incidence of infusion-related reactions 		
Statistical methods	The Kaplan-Meier method was used to		
	estimate time-to-event distributions.		
	 Hazard ratios and 95% CIs were estimated 		
	using a stratified Cox proportional hazards		
	regression model.		
	The infusion-related reaction rate and rates		
	of very good partial response or better were		
	compared between groups using a stratified		
	Cochran-Mantel-Hansel test.		
Sample size	 Dara SC group: n=263 		
	 Dara IV group: n=259 		
Follow-up period	Median, 7.5 months (IQR 6.5-9.3)		
Main background	Dara SC group vs Dara IV group		
factors of subjects	 Male, n (%):136 (52) vs 149 (58) 		
	• Median age (range), years: 65 (42–84) vs 68		
	(33–92)		
	 Median weight, kg*: 72.4 (39–130) vs 73 		
	(28.6–138)		
	 Median time since initial diagnosis, years: 		
	6.01 (0.8–21.1) vs 5.36 (0.6–39)		
	 Cytogenetic risk, n (%) 		
	 Standard risk: 146 (74) vs 167 (83) 		
	 High risk: 52 (26) vs 35 (17) 		
Efficacy results	Overall Response		
	 An overall response was observed in 41% 		
	(n=108/263) patients in the SC group and		
	37% (n=96/259) in the IV group (RR 1.11,		
	95% CI 0.89–1.37).		
	PFS		
	Median PFS was 5.6 vs 6.1 months for SC		
	group vs IV group, respectively (HR 0.99,		

	95% CI 0.78–1.26, p=0.93).
	OS
	 Six-month survival was 88% (95% CI, 83–
	91) with SC daratumumab and 83% (95%
	CI, 78–87) with IV daratumumab.
	 Follow-up was short and therefore OS data
	were not mature.
	Patients with very good partial response
	 Proportion of patients with very good partial
	response or better was similar between the
	SC and IV groups (50 [19%] vs 44 [17%]);
	OR 1.16, 95% CI 0.73–1.85, p=0.53).
Safety results	IRRs
	IRR was significantly lower for SC group vs
	IV group
	 Dara SC group: 13%, n=33/260
	 Dara IV group: 34%, n=89/258
	 OR 0.28, 95% CI 0.18–0.44, p<0.0001
	• The most common IRR were chills (5% vs
	12% patients), pyrexia (5% vs 3%) and
	dyspnea (1% vs 7%) in SC group vs IV
	group, respectively.
	With IV group, IRR led to dose interruptions
	for 79 (31%) patients, one instance of a
	terminated infusion, decreases in infusion
	rate in 26 (10%) patients and two treatment
	discontinuations.
	 Whereas, with Dara SC, there was no
	treatment discontinuation, dose interruption
	or incomplete dose administration.
	Median time to onset for IRRs after
	administration of first dose was longer in the
	SC group (3.4 h, IQR 1.5-4.4, range 1-47.8)
	than IV group (1.5 h, 1–1.8, 0–24.5).

	SAEs		
	 Serious adverse events occurred in 26% vs 		
	29% patients in the SC vs IV group		
	The most common adverse events leading to		
	discontinuation were thrombocytopenia (2		
	patients in SC group vs 5 in IV group),		
	anemia (2 vs 3) and septic shock (2 vs 3).		
Patient-reported	Satisfaction with therapy [1, 5]: Cancer Therapy		
outcome	Satisfaction Questionnaire (CTSQ)		
	Patients in the SC group responded more positively		
	to individual components of following parameters vs		
	IV group:		
	 Satisfied with form of cancer therapy 		
	 Taking cancer therapy as difficult as 		
	expected		
	Were side effects as expected		
	The Time and Motion survey[5] observed that		
	reduced treatment time which may resulted in		
	increased satisfaction and improved HRQoL.		
HCP-reported	 Time savings for Dara SC compared with 		
outcomes[7]	Dara IV:		
	 First treatment: 63.8% 		
	 Subsequent treatments: 49.5% 		
	 Drug preparation time stayed consistent 		
	between first and subsequent		
	administrations and was also relatively		
	consistent between the Dara SC and Dara IV		
	formulations.		
	 Drug administration duration was reduced 		
	for Dara SC versus Dara IV for primary		
	analysis by:		
	 First treatment: 99% 		
	 Subsequent treatments: 98% 		
	 Active HCP involvement was reduced for 		

	Dara SC versus Dara IV for primary analysis	
	by:	
	 First treatment: 96% 	
	 Subsequent treatments: 91% 	
	Estimated active HCP time per patient was	
	reduced for Dara SC compared with Dara IV	
	by 50% each for year 1 and year 2.	
	Estimated patient chair time was reduced for	
	Dara SC compared with Dara IV for primary	
	analysis by 97% each for first and	
	subsequent treatments.	
Limitations	 Patients and physicians were not masked to 	
	treatment.	
	Bias cannot be excluded in adverse-event	
	reporting or responses to the modified CTSQ.	
Conclusion	• Dara SC was non-inferior to Dara IV in terms	
	of efficacy and had an improved safety	
	profile, especially in IRR.	
	 The time and motion survey showed that 	
	Dara SC is associated with substantial	
	reduction in active HCP time, duration of	
	drug administration and patient chair usage	
	compared with Dara IV.	

3.2.8.2 Scenario analysis

• Table 3-5 List of literature for scenario analysis

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
Bibliographic	Palumbo A, Chanan-Khan A,	Jin Lu, Weijun Fu, Wei Li,	Dimopoulos MA, Oriol A, Nahi
information	Weisel K, Nooka AK, Masszi	Jianda Hu, Gang An, Yafei	H, San-Miguel J, Bahlis NJ,
	T, Beksac M, Spicka I,	Wang, Chengcheng Fu, Lijuan	Usmani SZ, Rabin N, Orlowski
	Hungria V, Munder M, Mateos	Chen, Jie Jin, Xinan Cen, Zheng	RZ, Komarnicki M, Suzuki K,
	MV, Mark TM, Qi M, Schecter	Ge, Zhen Cai, Ting Niu, Ming	Plesner T, Yoon SS, Ben
	J, Amin H, Qin X, Deraedt W,	Qi, Steven Sun, Xue Gai,	Yehuda D, Richardson PG,
	Ahmadi T, Spencer A,	Weiping Liu, Wenyu Liu, Xue	Goldschmidt H, Reece D, Lisby
	Sonneveld P; CASTOR	Yang, Xiaojun Huang.	S, Khokhar NZ, O'Rourke L,
	Investigators: Daratumumab,	Daratumumab, Bortezomib,	Chiu C, Qin X, Guckert M,
	Bortezomib, and	and Dexamethasone Versus	Ahmadi T, Moreau P; POLLUX
	Dexamethasone for Multiple	Bortezomib and	Investigators. Daratumumab,
	Myelom, N Engl J Med	Dexamethasone in Chinese	Lenalidomide, and
	2016;375(8):754-66.[8]	Patients with Relapsed or	Dexamethasone for Multiple
		Refractory Multiple Myeloma:	Myeloma. N Engl J Med
		Phase 3 LEPUS (MMY3009)	2016;375:1319-31.[10]
		Study. Clin Lymphoma	
		Myeloma Leuk. 2021	
		Sep;21(9):e699-e709. doi:	
		10.1016/j.clml.2021.04.012.[9]	

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
Clinicaltrials.gov	NCT02136134	NCT03234972	NCT02076009
registry information			
Study sites	Multicenter (115 centers in	Multicenter (27 sites in China	Multicenter (135 sites in 18
	16 countries across Europe,	and Taiwan)	countries across North
	North America, South		America, Europe, and the Asia
	America, and the Asia-Pacific		Pacific region)
	region)		
Study enrollment	September 2014 to	December 24, 2017 to August	June 16, 2014 to July 14, 2015
period	September 2015	6, 2019	
Target population	Patients had relapsed or	Patients had received at least 1	Patients had relapsed or
	refractory multiple myeloma	prior line of therapy for	refractory multiple myeloma
	and received one or more	multiple myeloma, had at least	and received one or more lines
	lines of previous therapy.	a partial response to at least 1	of previous therapy.
		prior multiple myeloma	
		regimen.	
Eligibility criteria	Patients who had	• Patients were ≥18 years of	Patients had documented
	received at least one	age and had documented	multiple myeloma and
	previous line of therapy	multiple myeloma.	measurable disease at
	for multiple myeloma	Received at least 1 prior	screening according to
	Patients had at least a	line of therapy for multiple	serum or urinary M-
	partial response to one	myeloma.	protein levels or serum

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
	or more of their previous	Had at least a partial	free light-chain levels and
	therapies, and had	response to at least 1 prior	abnormal serum
	documented progressive	multiple myeloma	immunoglobulin free light-
	disease	regimen; had documented	chain ratios (kappa:
	• At screening, all patients	progressive disease	lambda light chains).
	were required to have	according to International	Patients had progressive
	measurable disease	Myeloma Working Group	disease according to
	based on assessments of	(IMWG) criteria on or after	International Myeloma
	the serum, urine, or	their last regimen.	Working Group (IMWG)
	both or to have	• ECOG PS score of ≤ 2 .	criteria during or after the
	measurable disease as	Had measurable disease at	receipt of their last
	assessed by the serum	screening based on serum	regimen, received and had
	free light-chain assay	M-protein level (≥1 g/dL	a response to one or more
		or 0.5 g/dL for patients	lines of previous therapy.
		with IgA, IgD, IgE, or IgM	
		multiple myeloma), urine	
		M-protein level (≥200	
		mg/24 hours), or serum Ig	
		free light chain ≥10 mg/dL	
		with abnormal serum Ig	
		kappa lambda free light	

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
		chain ratio (for patients	
		without measurable M-	
		protein in serum and	
		urine).	
		 And had any toxicities 	
		from prior therapy	
		resolved or stabilized to	
		≤grade 1.	
Key exclusion	Neutrophil count of 1000	Patients who had disease	Key exclusion criteria were
criteria	or less per cubic	refractory to a proteasome	lenalidomide-refractory
	millimeter, a hemoglobin	inhibitor or were intolerant	disease
	level of 7.5 g or less per	to bortezomib.	The discontinuation of
	deciliter	Patients who received	previous Lenalidomide
	Platelet count of less	prior anti-CD38 therapies.	treatment owing to
	than 75,000 per cubic	Patients who received	adverse events, a
	millimeter, a creatinine	anti-myeloma treatment	neutrophil count of
	clearance of 20 ml or	within 2 weeks or 5	1.0×109 or less per liter, a
	less per minute per 1.73	pharmacokinetic half-lives	hemoglobin level of 7.5 g
	m ² of body-surface area	of treatment, whichever	or less per deciliter, a
	An alanine	was longer, before	platelet count of less than
	aminotransferase or	randomization.	75×109 per liter

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
	aspartate	Patients who planned to	An alanine
	aminotransferase level	undergo a stem cell	aminotransferase or
	of \geq 2.5 times the upper	transplantation prior to	aspartate amino
	limit of the normal	progression of disease on	transferase level of 2.5 or
	range, and a bilirubin	this study.	more times the upper limit
	level of \geq 1.5 times the	Patients who had	of the normal range,
	upper limit of the normal	meningeal involvement of	An alkaline phosphatase
	range	multiple myeloma; grade	level of 2.5 or more times
	Patient refractory to	≥2 peripheral neuropathy	the upper limit of the
	bortezomib that was	or neuropathic pain;	normal range
	refractory to another	chronic obstructive	A bilirubin level of 1.5 or
	proteasome inhibitor	pulmonary disease with a	more times the upper limit
	Patients had	forced expiratory volume	of the normal range, and a
	unacceptable side effects	in 1 second <50% of	creatinine clearance of less
	from bortezomib	predicted normal;	than 30 ml per minute.
	 Grade ≥2 peripheral 	uncontrolled asthma;	
	neuropathy or	moderate or severe	
	neuropathic pain	persistent asthma within	
		the previous 2 years.	
Details of	Daratumumab group:	Daratumumab group:	Daratumumab group:
interventional	Daratumumab + Bortezomib	Daratumumab + Bortezomib	Daratumumab + Lenalidomide

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
method	+ Dexamethasone (DVd)	and dexamethasone (DVd)	+ Dexamethasone (DRd)
	Dosing:		Dosage:
	Daratumumab at a dose	Dosing: Daratumumab 16	Daratumumab: 16 mg per
	of 16 mg per kilogram	mg/kg IV was administered	kilogram IV administered
	administered	weekly during cycles 1 through	weekly
	intravenously once per	3, every 3 weeks during cycles	Lenalidomide: 25 mg
	week	4 through 8, and every 4	orally
	Bortezomib administered	weeks and received up to eight	Dexamethasone: 40 mg
	subcutaneously at 1.3	21-day cycles of bortezomib	weekly
	mg per square meter	1.3 mg/m 2 subcutaneously on	Patients received daratumumab
	Dexamethasone at a	days 1, 4, 8, and 11 of each	on days 1, 8, 15, and 22 for 8
	dose of 20 mg per cycle	cycle and dexamethasone 20	weeks during cycles 1 and 2,
	(Orally or intravenously)	mg orally or IV on days 1, 2, 4,	every 2 weeks (on days 1 and
	Patients received	5, 8, 9, 11, and 12 of each	15) for 16 weeks (cycles 3
	daratumumab	cycle. A reduced dose of	through 6), and every 4 weeks.
	intravenously once per	dexamethasone (20 mg	Lenalidomide administered
	week (days 1, 8, and 15)	weekly).	orally on days 1 to 21 of each
	during cycles 1 to 3,		cycle if the creatinine clearance
	once every 3 weeks (on		was more than 60 ml per
	day 1) during cycles 4 to		minute.
	8, and once every 4		The dose of dexamethasone

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
	weeks until the patient		was administered at a dose of
	withdrew consent, the		20 mg before infusion as
	disease progressed, or		prophylaxis for infusion-related
	unacceptable toxic		reactions and 20 mg was
	effects developed.		administered the next day.
	Patients received		
	Bortezomib on days 1, 4,		
	8, and 11 of cycles 1 to		
	8. Dexamethasone		
	administered on days 1,		
	2, 4, 5, 8, 9, 11, and 12.		
Details of	Control group: Bortezomib +	Control group: Bortezomib +	Control group: Lenalidomide +
comparators	Dexamethasone (Vd)	Dexamethasone (Vd)	Dexamethasone (Rd)
	Dosing:	Dosing: Patients received up to	Dosing:
	Bortezomib administered	eight 21-day cycles of	Lenalidomide: 25 mg
	subcutaneously at 1.3	bortezomib 1.3 mg/m 2	orally
	mg per square meter	subcutaneously on days 1, 4,	Dexamethasone: 40 mg
	Dexamethasone at a	8, and 11 of each cycle and	weekly
	dose of 20 mg per cycle	dexamethasone 20 mg orally or	
	(orally or intravenously)	IV on days 1, 2, 4, 5, 8, 9, 11,	
		and 12 of each cycle. A	

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
		reduced dose of	
		dexamethasone (20 mg	
		weekly)	
Study design	Randomized, phase 3 trial	Randomized, phase 3 trial	Randomized, phase 3 trial
	Randomization was assigned	Randomization was assigned in	Randomization was assigned in
	in a 1:1 ratio.	a 2:1 ratio.	a 1:1 ratio
Blinding method	Open label	Open label	Open label
Primary endpoint	Progression-free survival	Progression-free survival	Progression-free survival
Key secondary	Time to disease	Overall response (partial	Time to disease
endpoints	progression	response or better)	progression
	Overall response rate	Very good partial response	Overall response rate, rate
	Proportion of patients	or better	of very good partial
	who achieved very good	Median duration of	response or better
	partial response or	response	(comprising very good
	better	Time to response	partial, complete, and
	Duration of response,		stringent complete
	the time to response		responses)
	Overall survival		Rate of complete response
	The time to subsequent		or better (comprising
	antimyeloma treatment		complete and stringent
	was an exploratory		complete responses)

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
	efficacy end point.		Percentages of patients
			with results below the
			threshold for minimal
			residual disease, time to
			response, duration of
			response, and overall
			survival
Statistical analysis	The log-rank test	The Kaplan–Meier method	Stratified log-rank test
	method was used to	was used to estimate the	method was used to
	compared both groups.	distributions.	compared both groups.
	Hazard ratios and 95%	A stratified Cox regression	Hazard ratios and 95%
	CIs were estimated	model with treatment as	confidence intervals were
	using a stratified Cox	the sole explanatory	estimated with the use of
	proportional hazards	variable was used to	a Cox regression model,
	regression model.	estimate HRs and 95%	with treatment as the sole
	The Kaplan–Meier	confidence intervals.	explanatory variable.
	method was used to	A stratified Cochran	Cochran-Mantel-Haenszel
	estimate the	Mantel-Haenszel chi-	tests were used to
	distributions.	square test was used to	compare overall response
	A stratified Cochran	measure treatment	rates, rates of very good
	Mantel-Haenszel chi-	differences in the overall	partial response or better,

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
	square test was used to	response rate, ≥very good	and other binary end
	test between-group	partial response rate, and	points. Duration of
	differences in the overall	≥CR rate.	response was assessed by
	response rate.		means of the Kaplan–
			Meier method.
Sample size	Daratumumab group:	Daratumumab group:	Daratumumab group:
	n=251	n=141	n=286
	• Control group: n=247	 Control group: n=70 	• Control group: n=283
Follow-up period	Primary analysis, median: 7.4	Median, 8.2 months	Primary analysis, median: 13.5
	months		months
	Updated analysis, median: 40		Updated analysis, median: 44.3
	months		months
Main background	Daratumumab group vs	Daratumumab group vs control	Daratumumab group vs control
factors of subjects	control group	group	group
	Median age (range),	 Male, n (%): 85 (60.3) vs 	Median age (range),
	years: 64 (30–88) vs 64	42 (60.0)	years: 65 (34–89) vs 65
	(33–85)	 Median age (range), 	(42–87)
	Median time since initial	years: 61.0 (28-79) vs	Median time since initial
	diagnosis, years: 3.87	61.0 (43-82)	diagnosis, years: 3.5 (0.4–
	(0.7–20.7) vs 3.72 (0.6–	Median time since initial	27.0) vs 4.0 (0.4–21.7)
	18.6)	diagnosis, years: 3.53	Cytogenetic risk, n/n (%)

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
	Median no. of previous	(0.6-11.5) vs 3.45 (0.8-	 Standard risk:
	lines of therapy (range):	14.1)	193/228 (84.6) vs
	2 (1–9) vs 2 (1–10)	Median no. of previous	176/211 (83.4)
	Cytogenetic risk, n (%)	lines of therapy (range): 2	 High risk: 35/228
	 Standard risk: 	(1-11) vs 2 (1-7)	(15.4) vs 35/211
	140/181 (77.3) vs	Cytogenetic risk, n (%)	(16.6)
	137/174 (78.7)	 Standard risk: 92 	
	 High risk: 41/181 	(66.7) vs 41 (60.3)	
	(22.7) vs 37/174	 High risk: 46 (33.3) 	
	(21.3)	vs 27 (39.7)	
Efficacy results	Primary analysis[2]	Primary analysis [3]	Primary analysis[4]
	Overall response	Overall Response	Overall Response
	The overall response	An overall response was	• The overall response rate
	rate was 82.9% in the	observed in 82.5%	was 92.9% in
	daratumumab group and	(n=113/137) patients in the D-	Daratumumab group vs.
	63.2% in the control	Vd and 65.1% (n=41/63) in Vd	76.4% in the control
	group (p<0.001).	(p= 0.00527).	group (p<0.001).
	PFS	 >CR or better 32.8% 	PFS
	The 12-month rate of	(n=45/137) vs 11.1%	Median PFS was not
	PFS rate was 60.7%	(n=7/63); p=000.79.	reached in Daratumumab
	(95% CI, 51.2-69.0) in	VGPR or better	group compared with 18.4

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
	the daratumumab group	65%(n=89/137) vs 33.3%	months in the control
	as compared with 26.9%	(n=21/63); p=0.0002	group (HR 0.41; 95% CI
	(95% CI, 17.1-37.5) in	Subgroup analysis	0.26-0.66; p<0.001).
	the control group.	Patients with 1 prior line of	• The Kaplan–Meier PFS rate
	OS	therapy: 90.2% vs.	at 12 months was 83.2%
	Remained immature at	66.7%; OR, 4.63; 95% CI,	(95% CI, 78.3-87.2) in
	the time of primary	1.11-19.19.	the daratumumab group
	analysis.	Patients with prior	and 60.1% (95% CI, 54.0-
	Partial and complete	bortezomib treatment:	65.7) in the control group.
	response	81.1% vs. 62.0%; OR,	OS
	Partial response or	2.64; 95% CI, 1.24-5.58.	Kaplan–Meier rate of
	better n=142 (59.2% vs.	The ORR was higher with	overall survival at 12
	29.1%, and complete	DVd versus Vd in the	months was 92.1% (95%
	response or better n=68	standard-risk cytogenetic	CI, 88.2-94.7) in the
	(19.2% vs. 9.0%,	abnormalities subgroup	daratumumab group and
	p<0.001)	(85.6% vs. 57.9%; OR,	86.8% (95% CI, 82.2-
	Exploratory, post hoc,	4.31; 95% CI, 1.80-	90.3) in the control group
	secondary analysis[16]	10.30).	Patients with very good partial
	Median follow-up: 19.4	The ORRs were similar	response
	months	with DVd and Vd in the	Partial response or better
	PFS	high-risk cytogenetic	response (43.1% vs.

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
	Daratumumab group	abnormality's subgroup	19.2%, p<0.001).
	significantly prolonged	(75.0% for both groups;	Updated exploratory, post
	PFS as compared to	OR, 1.00; 95% CI, 0.32-	hoc, secondary subgroup
	control group (16.7 vs	3.15).	analyses[11]
	7.1 months; HR, 0.31;	PFS	Median follow-up: 25.4 months
	95% CI, 0.24-0.39;	ITT population	PFS: Daratumumab group
	p<0.0001)	• Median PFS was NR vs 6.3	improved PFS compared
	ORR	months; HR 0.28; 95% CI,	with control group
	ORR was significantly	0.17-0.47; p<0.00001 for	(median not reached vs.
	improved with DVd	DVd vs Vd, respectively.	17.5 months; HR, 0.41;
	versus Vd (83.8%	The estimated 12-month	95% CI, 0.31-0.53;
	versus 63.2%;	PFS rate was 62.4% with	p<0.0001).
	p<0.0001), including	DVd versus 24.2% with	ORR: The overall response
	higher rates of stringent	Vd.	rate was 92.9% vs 76.4%,
	complete response	The median time to	and 51.2% vs 21.0%
	(8.8% vs 2.6%), CR or	disease progression was	achieved a complete
	better (28.8% vs 9.8%;	significantly prolonged	response or better,
	p<0.0001), and very	with DVd versus Vd	respectively (both
	good partial response or	(median, NR vs. 6.5	p<0.0001) and deeper
	better (62.1% vs	months; HR, 0.26; 95%	responses, including
	29.1%; p<0.0001).	CI, 0.15-0.46; p<0.00001.	complete response or

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
	OS	Subgroup analysis[9]	better (56.6 vs 23.2%;
	Remained immature at	Patients with 1 prior line of	p<0.0001).
	the time of secondary	therapy: Median PFS was	OS: Data was immature
	analysis.	NR vs 6.3 months; HR	Subgroup analyses
	Updated three-year	0.16; 95% CI, 0.06-0.47	determined that the
	follow-up data[18]	for DVd vs Vd,	clinical benefit of
	Median follow-up: 40 months	respectively.	daratumumab was
	PFS was significantly	With prior bortezomib	maintained in patients
	prolonged for patients	treatment: Median PFS	regardless of cytogenetic
	receiving daratumumab	was NR vs 5.0 months; HR	risk status prior lines of
	versus control group	0.31; 95% CI, 0.19-0.51	therapy received, prior
	(median, 16.7 months	for DVd vs Vd,	treatment exposure
	vs. 7.1 months; HR,	respectively.	(thalidomide or
	0.31; 95% CI, 0.25-	High cytogenetic risk:	lenalidomide), or time
	0.40; p<0.0001). PFS	Median PFS was 10.9	since last therapy.
	benefit was maintained	months vs 6.3 months;	Extended follow-up[24]
	across patient	HR, 0.36; 95% CI, 0.18-	Median follow-up: 44.3 months
	subgroups, including	0.75 for DVd vs Vd,	PFS: Daratumumab group
	patient age and	respectively.	significantly prolonged PFS
	cytogenetic risk status.	OS	compared with control
	ORR was significantly	The estimated 12-month	group (median, 44.5 vs

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
	improved with	OS rate was 87.8% with	17.5 months; HR, 0.44;
	daratumumab group vs	DVd versus 68.2% with	95% CI, 0.35–0.55;
	control group (85% vs	Vd.	p<0.0001).
	63%).		ORR: Significant
	• OS was not reached.		improvement was
	Subgroup analysis based		observed in Daratumumab
	on cytogenetic risk		group compared with
	status[20]		control group (92.9 vs
	Median follow-up: 40 months		76.4%; p<0.0001).
	PFS		Cytogenetic subgroup
	Daratumumab group		analysis[25]
	prolonged median PFS		Median follow-up: 44.3 months
	compared with control group		PFS: Daratumumab group
	in patients with:		prolonged PFS vs control
	Standard cytogenetic		group in patients with
	risk (16.6 months vs 6.6		standard cytogenetic risk
	months; HR, 0.26; 95%		(median, not estimable vs
	CI, 0.19–0.37;		18.6 months; HR, 0.43;
	p=0.0001)		95% CI, 0.32–0.57; p<
	High cytogenetic risk		0.0001) and high
	(12.6 vs 6.2 months;		cytogenetic risk (median,

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
	HR, 0.41; 95% CI, 0.21-		26.8 months vs 8.3
	0.83; p=0.0106)		months; HR, 0.34; 95%
	ORR		CI, 0.16-0.72; p=0.0035).
	Higher overall response rate		ORR: The ORR and rates
	was achieved with		of VGPR or better and CR
	Daratumumab group vs		or better were higher with
	control group:		daratumumab group
	Standard risk: 84% vs		compared with control
	62%, p<0.0001		group, regardless of
	• High risk: 85% vs 56%,		cytogenetic risk status.
	p=0.051		OS: Data was immature.
Safety results	Primary analysis[8]	Primary analysis[9]	Primary analysis[10]
	Daratumumab group and	Patients reported at least	• The rate of infection of
	the control group had at	1 TEAE, and grade 3/4	grade 3/4 was slightly
	least one adverse event	TEAEs were reported in	higher in the
	after the start of	89.3% of patients in the	daratumumab group than
	treatment (98.8% and	DVd group and 75.0% of	in the control group
	95.4%, respectively).	patients in the Vd group.	(28.3% and 22.8%,
	Hematologic adverse	The incidence of	respectively).
	events were observed	treatment-emergent	The most common
	higher rates in the	cytopenias was high with	adverse events leading to

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
	daratumumab group	DVd (any grade, 97.1%;	death were acute kidney
	than in the control group	grade 3/4, 72.1%) and Vd	injury (in 0.4% of the
	of any grade of	(any grade, 91.2%; grade	patients in the
	thrombocytopenia	3/4, 58.8%).	daratumumab group and
	(58.8% vs. 43.9%),	Thrombocytopenia (DVd,	in 1.1% in the control
	neutropenia (17.7% vs.	51.4%; Vd, 36.8%) and	group), septic shock (in
	9.3%), and lymphopenia	lymphopenia (DVd,	1.1% and 0.4%,
	(13.2% vs. 3.8%)	43.6%; Vd, 29.4%) were	respectively), and
	Non-hematologic	the two most commonly	pneumonia (in 0.7% in
	adverse events, the rate	reported grade 3/4 TEAEs	each group).
	of peripheral sensory	in both treatment groups.	• The percentage of patients
	neuropathy was higher	A higher incidence of	with adverse events
	in the daratumumab	infections was reported	leading to the
	group than in the control	with DVd versus Vd (any	discontinuation of
	group (47.3% vs.	grade, 81.4% vs. 63.2%,	treatment was similar in
	37.6%).	respectively; grade 3/4,	the two groups: 6.7% in
	• The rates of grade 3/4	54.3% vs. 41.2%),	the daratumumab group
	infections and	primarily attributed to a	and 7.8% in the control
	infestations were similar	higher incidence of any	group.
	in the two groups	grade and grade 3/4 upper	SAEs
	(21.4% and 19.0%,	respiratory tract infection	Serious adverse events

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
	respectively), and the	(any grade, 37.9% vs.	were reported in 48.8% of
	rates of bleeding events	22.1%; grade 3/4, 13.6%	the patients in the
	of any grade were 7.0%	vs. 4.4%) and lung	daratumumab group and
	in the daratumumab	infection (any grade,	42.0% in the control
	group and 3.8% in the	37.1%; vs. 27.9%; grade	group.
	control group.	3/4, 30.0% vs. 22.1%).	Pneumonia was the most
	IRRs		common SAE (in 8.1% in
	Any grade infusion-		daratumumab group and
	related reactions		8.5% in control group).
	associated with		IRRs
	daratumumab were		The incidence of
	reported in 45.3% of the		daratumumab IRRs of any
	patients.		grade was 47.7%, with
	Infusion-related		92% of the reactions
	reactions were mostly		occurring during the first
	limited to grade 1 or 2		infusion. These reactions
	events; at least one		were mostly of grade 1 or
	grade 3 event was		2.
	reported in 21 patients		The most common
	(8.6%), and no grade 4		infusion-related reactions
	events were reported.		were cough (8.5% of the

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
	The most common		patients), dyspnea
	adverse event were		(8.5%), and vomiting
	dyspnea (10.7%),		(5.7%).
	bronchospasm (9.1%),		A total of 15 patients
	and cough (7.0%).		(5.3%) had grade 3
	Exploratory, post hoc,		infusion reactions, and no
	secondary analysis[19]		patient had an event of
	Median follow-up: 19.4		grade 4 or 5.
	months		Updated exploratory, post
	The safety profile of		hoc, secondary subgroup
	daratumumab group		analyses[26]
	remained consistent with		Median follow-up: 25.4 months
	longer follow up.		Safety profile remained
	Subgroup analysis based		unchanged from the
	on cytogenetic risk		primary analysis.
	status[18]		The most common
	Median follow-up: 40 months		treatment-emergent
	Safety profile of		adverse events of any
	daratumumab in		grade included
	standard and high		neutropenia, anemia,
	cytogenetic risk		thrombocytopenia,

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
	subgroups was		diarrhea, fatigue, upper
	consistent with the		respiratory tract infection,
	overall population of		cough, constipation,
	CASTOR.		muscle spasms,
	Updated three-year		nasopharyngitis, and
	follow-up data[20]		nausea.
	Median follow-up: 40 months		The most common
	No new safety concerns		adverse events (≥1%)
	were observed compared		leading to treatment
	with previous analyses.		discontinuation in
	Most common grade 3/4		daratumumab group
	TEAEs in the		compared with control
	daratumumab vs control		group included pneumonia
	group were		(1.4%vs. 0.7%),
	thrombocytopenia (46%		pulmonary embolism (0%
	vs. 33%), anemia (16%		vs. 1.1%), general
	vs. 16%), and		physical health
	pneumonia (10% vs.		deterioration (1.1% vs.
	10%).		0%), and renal failure
			(0.4% vs. 1.1%),
			respectively.

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
			Extended follow-up[24]
			Median follow-up: 44.3 months
			No new safety concerns
			were reported in either
			treatment group with
			longer follow-up.
			Cytogenetic subgroup
			analysis[25]
			Median follow-up: 44.3 months
			The safety profile of
			daratumumab group by
			cytogenetic risk was
			consistent with the overall
			population.
Patient-reported	Primary analysis[8, 21]	Not reported	Primary analysis[28]
outcomes	EORTC QLQ-C30		EORTC QLQ-C30
	(Daratumumab group n=227		Mean changes from
	vs control group n=219)		baseline were significantly
	Mean changes from		greater in global health
	baseline were generally		status, physical
	similar between		functioning, and pain

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
	treatment groups for		scores in the
	GHS, functioning and		Daratumumab group vs
	symptoms, and did not		the Control group;
	exceed 10 points for		however, magnitude of
	either treatment group		changes was low,
	(meaningful change, 5		suggesting no meaningful
	months vs. 5.1 months).		impact on HRQoL.
	Subgroup analyses		For subgroup analysis, in
	based on age (<65 years		both treatment groups,
	vs. ≥65 years), ECOG		changes from baseline
	performance status (0 or		were generally in favour of
	1 vs. 2) and depth of		younger patients versus
	response (≥VGPR vs.		older patients for GHS,
	≥PR) were consistent		emotional, cognitive, and
	with the results		social functioning scores,
	observed in the overall		and pain and fatigue
	population.		symptom scores.
	EQ-5D-5L (daratumumab		EQ-5D-5L VAS
	group n=225 vs control group		Mean EQ-5D-5L VAS
	n=216)		scores were maintained
	Median time to a		with treatment in both

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
	meaningful change was		DRd and Rd groups.
	5 months for both		• For subgroup analysis,
	treatment groups (HR		irrespective of treatment
	1.03; 95% CI: 0.79–		group, changes from
	1.35; p=0.8072).		baseline in VAS scores
	For subgroup analysis,		generally favoured
	Subgroup analyses		younger patients, those
	demonstrated stability of		with an ECOG
	baseline EQ-5D-5L VAS		performance status of 0 or
	scores regardless of age		1, and those with ≥VGPR.
	(<65 years vs. ≥65		Updated exploratory, post
	years) or depth of		hoc, secondary subgroup
	response (≥VGPR vs.		analyses[26]
	≥PR).		Median follow-up: 25.4 months
	Exploratory, post hoc,		No decline in HRQoL
	secondary analysis[19]		measures were observed
	Median follow-up: 19.4		with the addition of
	months		daratumumab.
	No significant differences		
	in EORTC QLQ-C30		
	global health status and		

Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
	EQ-5D-5L Utility Score		
	and VAS score were		
	observed.		
Limitations	Incomplete cytogenetic	Not reported	Small sample size with
	abnormality data.		previous exposure to
	Cytogenetic testing was		lenalidomide.
	performed locally and no		PROs were evaluated as
	per-protocol specific cut-		secondary endpoints and
	off values were used for		were not powered to
	defining the presence of		detect differences between
	genetic abnormalities.		treatment groups.
			Only a subset of patient
			samples was collected for
			central cytogenetic
			testing.
Conclusion	DVd group resulted in	LEPUS study confirmed	DRd was associated with a
	significantly longer PFS,	that DVd demonstrated	significant PFS benefit
	and overall response	similar efficacy and safety	(p<0.001) and higher
	than Vd.	in Chinese patients with	rates of overall response
	• The treatment arm has	RRMM compared with the	(p<0.001) compared to
	slightly higher rate of	global phase 3 CASTOR	Rd. After more than 3
Study name	CASTOR study	LEPUS (MMY3009) study	POLLUX study
------------	---------------------------	---	----------------------------
	IRRs, of	study.	years of follow-up,
	thrombocytopenia and	 In LEPUS study, DVd 	daratumumab group
	neutropenia than control	demonstrated significant	continued to demonstrate
	group.	efficacy benefits versus	improved efficacy versus
	• For HRQoL, no	Vd.	control group (HR, 0.44;
	significant between-	The safety profile was	95% CI, 0.35–0.55;
	group differences for the	generally consistent with	p<0.0001).
	first eight cycles of	that reported in the global	Daratumumab group was
	therapy were observed	CASTOR study.	associated with infusion-
	for both DVd group and		related reactions and a
	Vd group.		higher rate of neutropenia
	After long-term follow-		than the control group.
	up (8 cycles of therapy),		The between-group
	the DVd group reported		magnitude of changes
	improvements in quality		from baseline in EORTC
	of life including GHS,		QLQ-C30 GHS, functional,
	pain and VAS scores as		and symptom scores, and
	compared to baseline,		EQ-5D-5L VAS scores
	whereas patients in the		were low, therefore
	Vd group did not receive		suggesting no meaningful
	further treatment.		impact on HRQoL.

3.3 Evaluation of Additional Benefit

3.3.1 Results of additional benefit assessment

3.3.1.1 Main analysis: Dara SC vs Dara IV based on COLUMBA trial COLUMBA clinical trial

The results of main evaluation for Dara SC versus Dara IV are presented in Table 3-6 where the reviewer assessed the individual endpoints. Overall survival is not reported as the data was immature.

Study population	Relapsed or refractory multiple myeloma	
Intervention	Daratumumab SC	
Comparator	Daratumumab IV	
Outcomes	ORR, PFS, IRR and treatment satisfaction (PRO)	
Presence or	No. The evidence showed that Dara SC was non-inferior	
absence of	to Dara IV in terms of efficacy (ORR and PFS). Despite	
additional	the confirmed difference in IRR (AE) rate and treatment	
usefulness	satisfaction between DARA SC and DARA IV, these	
	benefits are difficult to incorporate under the cost	
	effectiveness analysis framework. Although lower IRR	
	may be associated with some utility gain, however, it	
	was not measured in the clinical trial. Similarly, higher	
	treatment satisfaction, shorter duration of drug	
	administration, and shorter patient chair time which	
	may improve patients' utilities were not captured. There	
	is a limitation within the calculation of ICER to	
	incorporate these additional benefits. Besides, DARA SC	
	is associated with substantial reduction in active HCP	
	time which can improve the efficiency of overall patient	
	management.	
Data to support	Meta-analysis of RCTs	
judgment	Single clinical trial (9 associated publications)	
	Prospective, controlled, observational study	
	Indirect comparison of RCTs	
	Comparison of single-arm studies	

• Table 3-6 Additional benefit assessment for COLUMBA study

	No relevant clinical study data	
	🗆 Other	
Reason for judging	Overall response rate	
the presence or	COLUMBA study suggested the non-inferiority of	
absence of	Dara SC compared with Dara IV for overall	
additional	response, despite the ORR is slightly higher in DARA	
usefulness	SC group (41% vs 37%). Depth of response (very	
	good partial response or better) was similar	
	between the intervention and comparator groups.	
	Similar overall responses were observed across	
	prespecified subgroups, including bodyweight	
	categories, despite the Dara SC group not receiving	
	a bodyweight-based dose.	
	 Key finding from COLUMBA study was that depth 	
	and time to response were not affected by the route	
	of administration.	
	For Asian and Japanese-only cohorts, similar results	
	were observed.	
	Progression-free survival	
	 For global COLUMBA population, PFS was similar 	
	between Dara SC and Dara IV groups (5.6 months	
	vs 6.1 months (p=0.93), respectively).	
	For Asian and Japanese-only cohorts, similar results	
	were observed.	
	Infusion-related reaction	
	Dara SC had significant reduction in IRRs compared	
	with Dara IV (12.7% versus 34.5% (p<0.0001),	
	respectively).	
	Treatment satisfaction	
	Patients in the Dara SC group had more positive	
	perception and greater satisfaction with treatment	
	than those in the Dara IV group.	
	Modified Cancer Therapy Satisfaction Questionnaire	
	satisfaction with therapy domain score is higher	

	with Dara SC group (76.9) versus Dara IV group
	(70.5).
•	Regardless of the route of administration, the
	majority of patients in the Dara SC group (55.7-
	81.3%) responded that they would "definitely" take
	their cancer therapy again compared to Dara IV
	group (49.8–65.1%)
•	However, patients and physicians were not masked
	to treatment, performance bias cannot be excluded
	in responses to the modified CTSQ.[7]
0	ther:
•	Administration time was found to be markedly less
	for Dara SC (5 minutes) versus Dara IV (7 hours in
	the first injection and 3-4 hours per injection
	afterwards).
•	Dara SC is associated with substantial reduction in
	active HCP time, duration of drug administration
	and patient chair usage compared with Dara IV,
	resulting in increased satisfaction and may result in
	better quality of life.

• Table 3-7 ORR analysis in COLUMBA study

Subgroup	Dara IV, n/N	Dara SC, n/N	Relative risk
	(%)	(%)	(95% CI)
Age			
<75 years	70/200 (35.0)	89/216 (41.2)	1.18 (0.92-
>75 years	26/59 (44.1)	19/47 (40.4)	1.51)
			0.92 (0.58-
			1.43)
Sex			
Male	54/149 (36.2)	62/136 (45.6)	1.26 (0.95-
Female	42/110 (38.2)	46/127 (36.2)	1.67)
			0.95 (0.68-
			1.32)

Region			
Asia/Pacific	16/52 (30.8)	18/43 (41.9)	1.36 (0.79-
Other	80/207 (38.6)	90/220 (40.9)	2.34)
			1.06 (0.84-
			1.34)
Weight			
<65 kg	35/92 (38.0)	41/94 (43.6)	1.15 (0.81-
>65-85 kg	41/105 (39.0)	38/102 (37.3)	1.63)
>85 kg	20/61 (32.8)	29/66 (43.9)	0.95 (0.67-
			1.35)
			1.34 (0.86-
			2.12)
No of prior lines of			
therapy	72/175 (41.1)	78/174 (44.8)	1.09 (0.86-
<4	24/84 (28.6)	30/89 (33.7)	1.39)
>4			1.18 (0.76-
			1.85)
Cytogenetic risk			
High risk	11/35 (31.4)	20/52 (38.5)	1.22 (0.69-
Standard risk	64/167 (38.3)	66/146 (45.2)	2.27)
			1.18 (0.91-
			1.53)
ECOG PS score			
0	36/88 (40.9)	26/64 (40.6)	0.99 (0.67-
>1	60/171 (35.1)	82/199 (41.2)	1.46)
			1.17 (0.91-
			1.53)

C1: confidence interval; Dara IV: intravenous daratumumab; Dara SC: subcutaneous daratumumab; ECOG PS: Eastern Cooperative Oncology Group Performance Status; ORR: overall response rate Source: Mateos et al. 2020[7]

• Figure 3-3 Progression-free survival for global COLUMBA population

DARA IV: intravenous daratumumab; DARA SC: subcutaneous daratumumab; HR: hazard ratio; PFS: progression-free survival Source: Mateos et al. 2020[7]

• Table 3-8 Summary of IRR for global in COLUMBA study

Study group	Any grade IRRs, n (%)		Grade 3 IRRs, n (%)	
	Dara SC	Dara IV	Dara SC	Dara IV
Global COLUMBA	33 (12.7)	89 (34.5)	4 (1.5)	14 (5.4)
population				

Dara, daratumumab; IV, intravenous; SC, subcutaneous; IRR, infusion-related reaction There were no grade4/5 IRR.

Source: Mateos et al. 2020[7]

 Figure 3-4 Modified-CTSQ mean scores for global COLUMBA population for (A) 'Satisfied with Form of Cancer Therapy (Intravenous/Subcutaneous)'; (B) 'Taking Cancer Therapy as Difficult as Expected'; and (C) 'Were Side Effects as Expected'

CTSQ: Cancer Therapy Satisfaction Questionnaire; DARA IV: intravenous daratumumab; DARA SC: subcutaneous daratumumab Source: Mateos et al. 2020[7]

3.3.1.2 Scenario analysis

As there were no study identified comparing Dara SC with the comparator. The search was broadened to include Dara IV assuming similar efficacy between Dara IV and SC.

DVd vs Vd: The additional benefit result comparing DVd and Vd were confirmed based on two clinical studies (CASTOR and LEPUS). Similar results were observed from both studies.

CASTOR and LEPUS clinical trial

The additional benefit results for CASTOR studies are presented in Table 3-9 where the reviewer assessed the individual endpoints. Phase 3 LEPUS (MMY3009) study was conducted to confirm the efficacy and safety of daratumumab plus bortezomib and dexamethasone in Chinese patients with RRMM compared with the global phase 3 CASTOR study. The additional benefit results for LEPUS study are presented in Table 3-9. Overall survival is not reported for both trials as the data was immature.

Study Population	Relapsed and/or refractory multiple myeloma	
Intervention	Daratumumab + Bortezomib and Dexamethasone (DVd)	
Comparative Control	Bortezomib and Dexamethasone (Vd)	
Outcomes	PFS, ORR, safety and HRQoL	
Presence or absence	Yes, there is additional benefit comparing DVd* and Vd	
of additional	based on PFS and ORR result in CASTOR and LEPUS	
usefulness	study.	
	*There was no study identified comparing Dara SC with	
	the comparator. We first assumed similar efficacy	
	between Dara IV and SC based on COLUMBA study and	
	leverage the result of Dara IV clinical trial.	
Data to support	Meta-analysis of RCTs	
judgment	2 clinical trials and 8 associated publications	
	Prospective, controlled, observational study	
	Indirect comparison of RCTs	

• Table 3-9 Additional benefit assessment for CASTOR and LEPUS study

	Comparison of single-arm studies		
	No relevant clinical study data		
	🗆 Other		
Reason for judging	Progression-free survival		
the presence or	 Both CASTOR and LEPUS study resulted in 		
absence of	significantly longer PFS as compared to Vd alone,		
additional	with a risk of disease progression or death that was		
usefulness	61.4% (p<0.001) and 72% (p<0.00001) lower,		
	respectively, for the daratumumab group versus the		
	control group.[8, 9]		
	For CASTOR study, similar PFS results were observed		
	for exploratory post hoc analysis and extended		
	follow-up analyses (median PFS, 16.7 months versus		
	7.1 months, respectively for both).[18, 19]		
	 Regardless of the cytogenetic risk status subgroup, 		
	DVd showed better PFS compared to Vd alone after a		
	median follow-up of more than 3 years (standard		
	risk, 16.6 vs 6.6 months and high risk, 12.6 vs 6.2		
	months; respectively) in CASTOR study.[20]		
	Overall response rate		
	ORR was significantly improved for DVd group as		
	compared to Vd group for CASTOR study (82.9% vs		
	63.2% (p<0.001), respectively) and LEPUS study		
	(82.5% vs 65.1%, p=0.00527).		
	 For CASTOR study, the rates of very good partial 		
	response or better and complete response or better		
	in the primary analysis, secondary analysis, extended		
	follow-up analysis and cytogenetic risk subgroup		
	analysis (regardless of risk status).[8, 18-20]		
	 For LEPUS study, ORR was higher with DVd as 		
	compared to Vd for standard-risk cytogenetic		
	abnormalities subgroup (85.6% versus 57.9%,		
	respectively) and was similar for DVd and Vd in the		

	high-risk cytogenetic abnormalities subgroup (75.0%
	for both groups).
S	afety
	 DVd was associated with a higher incidence of
	adverse events in both CASTOR and LEPUS study as
	compared to Vd alone.
	 Any grade IRRs associated with DVd group were
	reported in 45.3% and 37.9% of patients for CASTOR
	and LEPUS study, respectively.
F	IRQoL
	 For CASTOR study, no significant between-group
	differences for the first eight cycles of therapy
	were observed for both DVd and Vd group.
	After long-term follow-up (i.e. after 8 cycles of
	therapy), DVd group reported improvements in
	quality of life including GHS, pain and VAS scores
	as compared to baseline, whereas patients in the
	Vd group did not receive further treatment.

DRd versus Rd: The additional benefit result comparing D-Rd and Rd were confirmed based on POLLUX clinical trial.

POLLUX clinical trial

The additional benefit results for POLLUX studies are presented in Table 3-10, where the reviewer assessed the individual endpoints. Overall survival is not reported as the data was immature.

•	Table 3-10 Additional	benefit	assessment	for	POLLUX study
---	-----------------------	---------	------------	-----	--------------

Study Population	Relapsed or refractory multiple myeloma
Intervention	Daratumumab + Lenalidomide and Dexamethasone (DRd)
Comparative Control	Lenalidomide and Dexamethasone (Rd)
Outcomes	PFS, ORR, AE and HRQoL

Presence or absence	Yes, there is additional benefit comparing DRd* and Rd		
of additional	based on PFS and ORR result in POLLUX study.		
usefulness			
	* There was no study identified comparing Dara SC with		
	the comparator. We first assumed similar efficacy		
	between Dara IV and SC based on COLUMBA study and		
	leverage the result of Dara IV clinical trial.		
Data to support	Meta-analysis of RCTs		
judgment	Single clinical trial and 7 associated publications		
	Prospective, controlled, observational study		
	Indirect comparison of RCTs		
	Comparison of single-arm studies		
	No relevant clinical study data		
	🗆 Other		
Reason for judging	Progression-free survival		
the presence or	DRd group reported a 63% lower risk of disease		
absence of	progression or death than Rd group alone (median		
additional	PFS, NR versus 18.4 months, respectively).		
usefulness	Similar outcome was observed for primary analysis,		
	secondary updated analysis (NR versus 17.5 months,		
	respectively) and long-term follow-up analysis (44.5		
	vs 17.5 months, respectively) [10, 24, 26] as well as		
	East-Asian population subgroup analysis (NR versus		
	13.8 months) and cytogenetic subgroup analysis,		
	regardless of cytogenetic risk status (standard risk,		
	NR vs 18.6 months and high risk, 26.8 vs 8.3		
	months, respectively).[25, 27]		
	Overall response rate		
	DRd was associated with higher rates of overall		
	response as compared to Rd alone (92.9% vs 76.4%,		
	respectively).[10]		
	Similar outcome was observed for East-Asian		
	population subgroup analysis (90.2% vs 72.1%,		

respectively) and cytogenetic subgroup analysis,
regardless of cytogenetic risk status. [25, 27]
Infusion-related reaction
 Incidence of daratumumab any grade IRRs was
47.7%, with 92% of the reactions occurring during
the first infusion.
HRQoL
HRQoL was evaluated as secondary endpoint and was
not powered to detect differences between treatment
groups.
No meaningful improvements from baseline in HRQoL
observed in POLLUX study for both groups.
 For subgroup analysis, changes from baseline in
HRQoL scores favored younger patients, those with
an ECOG performance status of 0 or 1, and those
with \geq VGPR, irrespective of treatment group.

4. Details of Analytical Methods

4.1 Analytical Methods

4.1.1 Calculation of cost-effectiveness

1) CMA (Main analysis)

Based on the additional benefit assessment result in section 3. Janssen determined to take a conservative approach and performed a cost minimization analysis as below.

An Excel model was built to calculate weekly direct medical cost including drug, drug administration, hospitalization and IRR (AE) management. Three daratumumab regimens were included, DVMP, DRd and DVd. For each of the regimen, we compare the accumulative direct medical cost between Dara SC (intervention) and DARA IV (comparator). Final results were pooled by the percentage of usage of each regimen in actual clinical practice based on MDV data.

In the main analysis, the duration comparison is set to be 32 weeks based on average daratumumab treatment duration in Japan from MDV data.

A sensitivity analysis was performed with the duration of 52 weeks [Sensitivity analysis 1]. Another sensitivity analysis was performed assuming % of patients receiving DARA SC regimen (due to the improved administration and safety) will not require hospitalization for regimen initiation [Sensitivity analysis 2].

• Figure 4-1 Treatment durations in the analyses

Tr	eatment in	itiation					
V							
	Week 1	Week	2	Week	3	 Week 32	 Week 52
	cost	cost		cost		cost	cost
	32-week total cost (Main)						
	52-week total cost (Sensitivity analysis 1)						

Dosing schedule of each regimen (DVMP, DRd for TIE NDMM, DRD for RRMM and DVd for RRMM) are as following Figure 4-2 to Figure 4-5.

• Figure 4-2 Dosing schedule of DVMP regimen

• Figure 4-3 Dosing schedule of DRd regimen for TIE NDMM

• Figure 4-4 Dosing schedule of DRd regimen for RRMM

• Figure 4-5 Dosing schedule of DVd regimen for RRMM

2) Other analysis: Cost difference from HCP time perspective

Based on the result of time in motion survey result [5], the breakdown of the time required from different types of HCPs in the first and a subsequent drug administration visit for DARA SC and DARA IV were acquired. Difference in minutes were calculated between DARA SC and DARA IV. The average hourly wage for the corresponding type of Japan HCP were applied to convert the HCP time into monetary term. Differences were calculated between DRAR SC and DARA IV. The result (HCP time and the value of HCP time) is shown per drug administration patient visit.

3) Other analysis: CUA (Scenario analysis)

At the request of the expert committee, additional other analysis, cost-utility analyses, were performed for the RRMM indications to assess the costeffectiveness of DARA SC combination regimens versus non-Dara combination regimens. These cost-utility models were developed in accordance with the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) Task Force on Good Modeling Practices, and Guideline for cost-effectiveness evaluation in Japan (second edition).

The models assess the incremental cost-effectiveness of DARA SC in combination with Vd or Rd compared with regimen without DARA SC (i.e. DVd vs. Vd and DRd vs. Rd) for the treatment of RRMM.

An excel-based partitioned survival model (PSM) was developed to estimate time and proportion of a cohort of patients in each health state which was estimated using progression free survival (PFS) and overall survival (OS) curves. PSM is a standard and well-accepted approach for oncology models for HTA/payer submissions. The model considered three-health states: pre-progression (or progression free), post-progression (or progressed disease), and death (Figure 4-6).

• Figure 4-6 Model Structure

Survival was estimated based on the projection of treatment-specific OS curves from the respective daratumumab (DARA) IV clinical trials (MMY3004 [DVd] and MMY3003 [DRd]). It was assumed that DARA SC had the same clinical efficacy as DARA IV. Treatment-specific PFS and OS parametric curves were used to determine health outcomes. To estimate the long-term health outcomes beyond trial periods, multiple parametric functions were fitted to the Kaplan Meier (KM) data for PFS and OS from the two DARA trials with the flexibility to explore all reference curves. The recommended reference curves for base-case and key scenarios were selected based on goodness-of-fit statistics, i.e. Akaike's Information Criteria (AIC), Bayesian Information Criteria (BIC).

Utility values informing the PFS and post-progression survival (PPS) health states as well as disutility values associated with adverse events were based on the data identified in the literature. These were used in the models to derive the qualityadjusted life year (QALY).

The models considered the following cost categories: drug acquisition, drug administration, adverse events, and medical resource uses (including end of life). Drug acquisition and administration costs were estimated by fitting parametric functions to the time-to-treatment discontinuation (TTD) KM data for the daratumumab combinations and comparators which were applied to unit drug costs data informed by Japan standard sources.

Cost outcomes include total and incremental costs and health outcomes are expressed as QALYs gained. The model employs a cost-utility analysis (CUA) calculating incremental cost-utility ratios (ICURs) as incremental costs per incremental QALYs gained.

One way sensitivity analysis (OWSA) is used to test the joint impact of uncertainty in the model parameters on the results.

4.1.2 Assumptions used in the model

1) CMA (Main analysis)

- 1. Dara IV is a weight-based dosing treatment. the weight for dose calculation is Kg based on Japan post-market surveillance data.
- Drug administration/Hospitalization fee is based on DPC payment schedule. (See Section 4.2.3)
- 3. MM patients that initiate Dara IV regimens are assumed to admitted to hospital for days (MDV database analysis, data cut-off: 2021-May) for drug administration and monitoring side effects. MM patients receiving Dara SC injection are assumed to be hospitalized for day as the side effect are less frequent and usually observed in this timeframe.
- 4. Cost comparison timeframe is set to be 32 weeks based on average duration of daratumumab regimen in Japan (MDV database analysis). The duration of treatment of DARA SC and IV is assumed to be the same based on the non-inferiority result in ORR and PFS from the clinical trial.
- 5. Since the duration is within 1 year, no discount was applied.
- 6. Other AE incidence and related costs are assumed to be the same between Dara IV and Dara SC except IRR (grade 3+). IRR cost was estimated based on the AE management guide of the Columba study. It is assumed to be methylprednisolone oral 60 mg per day for an average of days.
- 7. In sensitivity analysis 2, we assumed % of patients receiving DARA SC regimen (due to the improved administration and safety) will not require hospitalization for regimen initiation, the rest of patients will follow the original assumptions. All other parameters remain the same with the main analysis.

2) Other analysis: Time and cost difference from HCP time perspective

1. The assumptions in the main CMA analysis were applied when applicable.

- 2. The HCP time required per administration visit in the publication is assumed to be representative of clinical practice in Japan.
- 3. When average wage of a specific HCP type information is not available, the average wage of the most similar HCP role is applied.

3) Other analysis: CUA (Scenario analysis)

- 1. The assumptions in the main CMA analysis were applied in the CUA when applicable.
- Relative efficacy and safety inputs from the MMY3004 (DVd vs Vd) and MMY3003 (DRd vs Rd) trials are assumed to be representative of the RRMM population in Japan.
- Dara SC is assumed to have the same efficacy as dara IV in combo with Vd and Rd
- The cycle length used is 7 days thus, a year is assumed to consist of 52 cycles of 7 days. A half cycle correction was applied.
- 5. The effect of subsequent treatments is assumed to be implicitly incorporated in the OS curve, as patients in the MMY3004 and MMY3003 studies were allowed to receive other MM treatments upon progression from the randomized treatment.
- 6. In case the extrapolated PFS and OS curves cross, the model assumes that the percentage of patients who remain on PFS cannot be higher than the percentage of patients who remain on OS.
- 7. In case the extrapolated OS and the general population mortality curves cross, the model assumes that the percentage of patients who remain alive based on the OS curve cannot be higher than the percentage of patients who remain alive based on the general population mortality curve.
- Utility values are assumed to be health-state dependent (treatment independent) and constant over time.
- Patients are assumed to have subsequent treatment costs from disease progression until death. Subsequent treatment costs were derived from MDV, a Japanese claims database.

- 10. The cumulative probability of IRR (Grade 3+) for each Dara (SC) combination regimen was assumed to equal 1.5% in the absence of the IRR data (cumulative probability based on MMY3012 Dara [SC] arm).
- 11. The cumulative probabilities of non-IRR adverse events for each dara (SC) combination regimen were assumed to be the same as dara (IV) combination regimen based on MMY3004 (DVd [IV]) and MMY3003 (DRd [SC]) trials.

4.2 Parameters Used in the Analysis

1) CMA (Main analysis)

• Table 4-1 Parameters used for the analysis

Deremeter	Main	Sensitivity	Source
Parameter	analysis	analysis1	Source
Patient characteristics &			
Setting			
Body Weight		kg	PMS [4]
Proportion of hospitalization for			MDV database
the initial treatment for Dara		%	analysis in
regimen			Appendix L
Hespitalized days for Dara IV			MDV database
treatment initiation	days		analysis in
			Appendix L
Hospitalized days for Dara SC			Accumption
treatment initiation		лау	Assumption
			MDV database
Duration of treatment for Dara	22 wooks	F2 wooks	analysis in
regimen	JZ WEEKS	JZ WEEKS	Appendix L/
			assumption
Efficacy and safety parameter			
4.2.1*			
IRR incidence for Dara SC	1.	5%	MMY3012 study
IRR incidence for Dara IV	5.4%		MMY3012 study
IPP duration			MMY3012 study
	uays		[data on file]

Details of QOL values 4.2.2	Not applicable	
Cost parameters 4.2.3		
Drug cost	See Table 4-3 and 4- 4	MHLW list in November 2021 [32][33]
IRR cost per day	yen	See Table 4-10 for details
G005 Outpatient chemotherapy fee 1 (1) Injection of antineoplastic drugs II. Age \geq 15 years	6,000 yen	**
G000 Intradermal, subcutaneous, intramuscular injection fee (per one injection)	200 yen	**
G004: Intravenous infusion 2. to persons other than those specified in 1 (when the daily volume of injection is 500 mL or more)	980 yen	**
G004 Intravenous infusion (per day) 3 Other cases (Only for patients other than hospitalized patients.)	490 yen	**
F400 Prescription Fee 3 in the case of 1 and 2	680 yen	* *
DPC cost (per day) (Day 1 - Day 4)	yen	**
DPC cost (per day) (Day 5 - Day 14))	yen	**
DPC cost (per day) (Day 15 - Day 60)	yen	**

*Efficacy is assumed to be the same. Grade3/4 IRR events were included as important safety events in the analysis. The incidence of IRR events and the duration was set following the result of MMY3012.

** For all medical service fees, the revised medical service fees in April 2020, the revised Diagnosis Procedure Combination (DPC) the electronic score table in November 2021, and the Functional Assessment Factor II in April 2020 were used [34] [35] [36].

DPC code: 130040xx99x6xx(Disease name as 'Multiple myeloma, immune system malignant neoplasm', Surgery name as 'None' and Surgery and Procudure, etc.2 as '6') was used. For the calculation of DPC cost, the coefficients by medical institution was set as follows: Basic coefficient:

The DPC cost was calculated by multiplying the coefficient by medical institution by DPC score which corresponds to the DPC code and the day at the hospitalization, and then converting it into yen.

2) Other analysis: Cost difference from HCP time perspective

Parameters used in the analysis are summarized and presented in Appendix M.

3) Other analysis: CUA (Scenario analysis)

All parameters used in the base-case cost utility analysis are summarized and presented in Appendix A (DVd RRRM model) and Appendix B (DRd RRRM model).

4.2.1 Details of parameters such as efficacy and safety

1) CMA (Main analysis)

See section 4.2, Table 4-1.

2) Other analysis: Cost difference from HCP time perspective

Not applicable

3) Other analysis: CUA (Scenario analysis)

4.2.1.1 Time-to-Event Analysis

Time-to-event analysis was used to model and extrapolate OS and PFS curves based on individual patient data from the clinical trials of each treatment indication. Following recommendations by the National Institute for Health and Care Excellence (NICE) Decision Support Unit [37] on survival data extrapolation, six parametric distributions were fit to extrapolate time-to-event data and were implemented in the model.

- 1. Weibull
- 2. Exponential
- 3. Log-normal
- 4. Log-logistic
- 5. Generalized Gamma
- 6. Gompertz

The exponential distribution is a one-parameter function and is considered the simplest parametric model. The exponential model is a proportional hazards model, assuming a constant HR over time. The survival function can be expressed as below:

$S(t) = e^{(-\lambda t)}$

The Weibull and Gompertz distributions are functions with two parameters — a shape and scale. Therefore, these two distributions are more flexible than the exponential distribution. Both distributions are proportional hazards models. Their survival functions can be expressed as below:

Weibull: $S(t) = e^{(-\lambda t^{\gamma})}$

Gompertz: $S(t) = e^{\frac{\lambda}{\theta}(1-e^{(\theta t)})}$

The log-logistic and log-normal distributions share many similarities. They have a hazard function that can be non-monotonic with respect to time. Therefore, neither of the distributions can be parameterized as a proportional hazards model. Furthermore, due to their functional forms, the log-logistic and log-normal models typically produce long tails in the survivor function. As a result, the clinical validity of log-logistic and log-normal survival models must be carefully assessed. Their survival functions can be expressed as below:

Log-Logistic: $S(t) = (1 + e^{\theta}t^{\kappa})^{-1}$

Log-Normal: $S(t) = 1 - \frac{\Phi(\log_t - \mu)}{\sigma}$

where $\boldsymbol{\phi}$ is the standard normal distribution function

The generalized Gamma distribution is a flexible, three-parameter model. The Weibull, exponential and log-normal distributions are special cases of the generalized Gamma distribution. However, due to its flexibility, the long-term estimations may be influenced by the end of the Kaplan-Meier (KM) curves, which are based on small sample sizes. Therefore, like the log-normal and log-logistic distributions, the clinical validity of the projected survival must be assessed. The survival function can be expressed as below:

Generalized Gamma: $S(t) = 1 - \Gamma_{(\lambda t)^{\theta}}(\rho)$ where $\Gamma_{(\lambda t)^{\theta}}(\rho)$ is known as the incomplete gammafunction

Recommendations regarding the most appropriate parametric distribution have been made based on graphical assessment, fit statistics Akaike information criterion (AIC)/Bayesian information criterion (BIC) and clinical plausibility of long-term projections. A general rule of thumb is that the distribution with the lowest AIC and BIC values indicate the best fits to the underlying data. Selected time-to-event parameters may be found in 0 (PFS) and 0 (OS).

4.2.1.2 Adverse Events

The model used cumulative probabilities of AEs (infusion-related reaction [IRR] and non-IRRs) that occurred during the observed treatment period in the clinical trials.

In the absence of the IRR data for each Dara (SC) combo regimen, the cumulative probability of IRR (Grade 3+) for each Dara (SC) combo regimen was assumed to equal 1.5%. The cumulative probability was based on the Dara (SC) arm in the MMY3012 study.

For non-IRR AEs, only grade \geq 3 AEs occurring in \geq 5% of study subjects in any daratumumab arms in the different daratumumab studies were considered. This inclusion criterion has been generally considered appropriate and sufficient to capture AEs that would have a significant impact on resources and costs.

Cumulative probabilities of IRR and non-IRR AEs included in the model during the treatment period available for each regimen are shown are shown in Table 4-2.

• Table 4-2 Adverse Event Rates

Adverse Event	DVd (SC)	Vd	DRd (SC)	Rd
Anemia				
Diarrhea	-			
Fatigue				
Febrile Neutropenia				
Hypertension				
Infusion-Related	-			
Reactions				
Lymphopenia				
Neutropenia				
Peripheral	-			
Neuropathy				
Pneumonia				
	Assumed the		Assumed the	
	same as		same as	
	DVd (IV)		DRd (IV)	
Source/Rationale	based on	MMY3004	based on	MMY3003
	MMY3004,		MMY3003,	
	IRR based		IRR based	
	on MMY3012		on MMY3012	
Abbreviations: DRd =daratumumab in combination with lenalidomide and				
dexamethasone; DVd = daratumumab in combination with bortezomib and				
dexamethasone; $IV = intravenous$; RRMM = relapsed/refractory multiple myeloma; SC =				
subcutaneous				

4.2.2 Details of QOL values1) CMA (Main analysis)

Not applicable.

2) Other analysis: Cost difference from HCP time perspective

Not applicable.

3) Other analysis: CUA (Scenario analysis)

Health state utility values in the base-case scenarios were based on van Agthoven et al. (2004) [38], a commonly cited published study identified in the SLR. Most published RRMM CEAs reference the same data source.

QALYs were calculated as the proportion of patients per health state per cycle multiplied by the utility weights for each health state and proportion of a year represented by the cycle. Utility values used to inform model health states and events in the DRd and DVd models were 0.81 (progression-free) and 0.64 (post-progression).

Utility decrements due to AEs were also calculated based on treatment-specific AE rates and applied as one-time decrements from baseline utility value. Utility decrements used in the RRMM model were **second** for DRd (SC) and Rd, **second** for DVd (SC), and **second** for Vd.

The following methods were used to calculate utility decrement:

- 1. Adjusted disutility value: duration of AE multiplied by the disutility value per AE
- 2. Adjusted disutility value multiplied by the cumulative incidence rate per AE
- 3. Sum of all the calculated incidence rates per treatment regimen

4.2.3 Details of Cost Parameters

Unless otherwise noted, cost parameters values presented were used all analysis.

4.2.3.1 Drug Acquisition Costs

• Table 4-3 Unit Cost of Drug Acquisition

			Drug
Product name	Ingredient	Specification	price
			(yen)
Velcade Injection 3	Bortezomih	1 bottle of 3 ma	134 923
mg		i bottle of 5 mg	107,720

Darzalex Intravenous Infusion 100 mg	Daratumumab (Genetical Recombination)	1 bottle of 100 mg 5 mL	52,262
Darzalex Intravenous Infusion 400 mg	Daratumumab (Genetical Recombination)	1 bottle of 400 mg 20 mL solution	187,970
Darzquro Combination Subcutaneous Injection	Daratumumab (Genetical Recombination)/Borhyal uronidase Alfa (Genetical Recombination)	1 bottle of 15 mL	434,209
Decadron Tablet 4 mg	Dexamethasone	1 tablet of 4mg	29.90
Prednisolone tablet	Prednisolone	1 tablet of 5mg	9.80
Alkeran Tablet 2 mg	Melphalan	1 tablet of 2mg	159.70
Revlimid Capsule 5 mg	Lenalidomide Hydrate	1 capsule of 5 mg	8,085.30
Medrol Tablet 4 mg	Methylprednisolone	1 tablet of 4mg	14.8

Based on the unit cost of drug, the unit cost per administration for MM treatment was calculated as follows.

[Unit cost per administration] = [Unit cost of drug] x [Number of doses per administration]

• Table 4-4 Cost per administration used for CMA (MM treatment)

		Number of	Unit cost per
Product name	Dosage	doses per	administration
		administration	(yen)
Velcade Injection	2.02 mg	1	124 022
3 mg	(1.3mg× *1)*2	Ι	134,923
Darzalex	994.9 mg	2×400mg	
Intravenous	664.6 mg	2×400mg +	428,202
Infusion	(Tomyx~3)~2	1 × 100mg	

Darzquro Combination Subcutaneous Injection	1800mg	1	434,209
Decadron Tablet 4 mg	40 mg (For DRd regimen)	10	299
Decadron Tablet 4 mg	80 mg (For DVd regimen)	20	598
Prednisolone tablet	93 mg (60mg× 11 *2	19	186.2
Alkeran Tablet 2 mg	13.95 mg (9mg× *1)*2	7	1117.9
Revlimid Capsule 5 mg	25mg	5	40426.5

1 The body surface area for the analysis was set at **m**² from the mean height of **m** and the mean weight of **m** kg according to the results of the pharmacovigilance plan for Dara IV.

2 Assumed that vials were not reused due to the situation where drugs are used (unused drugs will be discarded).

3 The body weight used in the analysis was set at **a set of** kg based on the mean body weight according to the results of the pharmacovigilance plan for Dara IV.

4.2.3.2 Drug Administration Costs

Administration of IV and SC treatments require an outpatient or inpatient visit that may include nursing and pharmacist preparation time. Therefore, administration costs for IV and SC treatments were included in the model.

The proportion of patients initiating Dara in the hospital setting and duration of hospital stay are shown in Table 4-5.

 Table 4-5 Proportion of Patients Initiating Dara in Hospital and Duration of Hospital Stay

Hospitalization	Daratumumab SC	Source
-----------------	----------------	--------

Proportion of Patients Initiating Dara In Hospital	%	MDV database analysis in Appendix L
Duration of Hospital Stay (Days)		Assumption

The hospitalization fee (DPC cost) accounts for costs associated with the hospital bed, care management, and drug acquisition and administration. For the calculation of DPC cost, the coefficients by medical institution were set as follows:

DPC cost was calculated by multiplying the coefficient by medical institution by DPC score which corresponds to the DPC code and the day at the hospitalization, and then converting it into yen.

Unit costs related to mode of treatment administration are presented in Table 4-1 cost parameters

Proportion of the regimens in clinical practice is shown in Table 4-6.

• Table 4-6 Proportion of regimens in clinical practice (Cost Minimization Analysis)

Regimen (population)	Proportion	Source
DVMP		
(TIE NDMM and RRMM)		MDV databasa anabusia in
DRd		
(TIE NDMM)		Appendix L
DRd		

(RRMM)	
DVd	
(RRMM)	

Administration costs are based on schedules outlined in Table 4-7. The administration cost is applied per administration and does not vary by length of administration (i.e. an IV administration requiring two hours costs the same as an IV administration requiring seven hours).

• Table 4-7 Dosing Schedules

	Dose		Admin	Days	Doses
Regimen	Treatment	ner Admin	Route	per	per
			Route	Cycles	Cycle
		1800 mg			
	Daratumumab	(SC)	SC/IV	20	4
	(Cycles 1-2)	16 mg/kg	30/10	20	4
		(IV)			
		1800 mg			
	Daratumumab	(SC)	SC/IV	20	C
	(Cycles 3-6)	16 mg/kg	30/10	20	2
		(IV)			
DDd		1800 mg			
DRU	Daratumumab	(SC)	SC/IV	28	1
	(Cycles 7+)	16 mg/kg	30/10		
		(IV)			
	Lenalidomide	25-22	Oral	20	21
	(Cycles 1+)	25119		20	21
	Dexamethasone	20-22	Oral	20	0
	(Cycles 1-2)	2011g	Ulai	20	0
	Dexamethasone	40mg	Oral	20	4
	(Cycles 3+)	4011g	Ulai	20	4
	Lenalidomide	25mg	Oral	28	21
	(Cycles 1+)	zoniy	Utai	20	21
RU NU	Dexamethasone	40ma	Oral	28	4
	(Cycles 1+)	40mg		20	4

Regimen	Treatment	Dose per Admin	Admin Route	Days per Cycles	Doses per Cycle
	Daratumumab (Cycles 1-3)	1800 mg (SC) 16 mg/kg (IV)	SC/IV	21	3
	Daratumumab (Cycles 4-8)	1800 mg (SC) 16mg/kg (IV)	SC/IV	21	1
DVa	Daratumumab (Cycles 9+)	1800 mg (SC) 16mg/kg (IV)	SC/IV	28	1
	Bortezomib (Cycles 1-8)	1.3mg/m2	SC/IV	21	4
	Dexamethasone (Cycles 1-8)	20mg	Oral	21	8
Vd	Bortezomib (Cycles 1-8)	1.3mg/m2	SC/IV	21	4
va	Dexamethasone (Cycles 1-8)	20mg	Oral	21	8
	Daratumumab (Cycle 1)	1800 mg (SC) 16 mg/kg (IV)	IV/SC	42.00	6.00
DVMP	Daratumumab (Cycles 2-9)	1800 mg (SC) 16 mg/kg (IV)	IV/SC	42.00	2.00
	Daratumumab (Cycles 10+)	1800 mg (SC) 16 mg/kg	IV/SC	28.00	1.00

Regimen	Treatment	Dose per Admin	Admin Route	Days per Cycles	Doses per Cycle
		(IV)			
	Bortezomib (Cycle 1)	1.30mg/m2	IV/SC	42.00	8.00
	Bortezomib (Cycles 2-9)	1.30mg/m2	IV/SC	42.00	4.00
	Melphalan (Cycles 1-9)	9.00mg/m2	Oral	42.00	4.00
	Prednisone (Cycles 1-9)	60.00mg/m2	Oral	42.00	3.00

In clinical practice, bortezomib may be administered via an IV or SC. The proportion of IV administration of bortezomib is reported in Table 4-8.

• Table 4-8 Percent Bortezomib IV Administration

IV Administration % for Bortezomib	Source
%	Based on Japan Market Intelligence

Unit cost per administration for MM treatment was calculated as follows: [Unit cost per administration] = [Unit cost of drug] x [Number of doses per administration]

Unit costs per administration are presented in Table 4-9.

• Table 4-9 Unit Cost Per Administration

Product		Number Of	Unit Cost Per
Namo	Dosage	Doses Per	Administration
Name		Administration	(Yen)
Velcade	ma		
Injection 3	(1.2mg) *1)*2	1	134,923.00
mg	(1.3mg× 1)*2		
Darzalex	ma	2×400mg	
Intravenous	(16mg, 11)	$2 \times 400 \text{ mg} +$	428,202.00
Infusion	(Tomy×kg*3)*2	T × Toomg	

Dreduct		Number Of	Unit Cost Per
Product	Dosage	Doses Per	Administration
Name		Administration	(Yen)
Darzquro			
Combination	1900mg	1	424 200 00
Subcutaneous	rooonig		434,209.00
Injection			
Decadron	40 mg	10	200.00
Tablet 4 mg	(For DRd regimen)	10	299.00
Decadron	80 mg	20	598.00
Tablet 4 mg	(For DVd regimen)	20	
Prednisolone	mg	10	196 20
tablet	(60mg× *1)*2	19	160.20
Alkeran	mg	7	1 117 00
Tablet 2 mg	(9mg× *1)*2	1	1,117.90
Revlimid	25mg	5	40 426 50
Capsule 5 mg	zong	5	40,420.50
[1] The body surf	ace area for the analysis wa	s set at m ² from	the mean height of
m and the mean weight of kg according to the results of the pharmacovigilance			
plan for Dara IV.			
[2] Assumed that vials were not reused due to the situation where drugs are used (unused			
drugs will be discarded).			
[3] The body weight used in the analysis was set at set used kg based on the mean body			
weight according to the results of the pharmacovigilance plan for Dara IV.			

4.2.3.3 Modeling Treatment Duration (Cost Utility Analysis)

Treatment-related costs (drug acquisition and administration) are accrued based on the predicted number of patients who remain on treatment each week (model cycle). The number of patients who remain on treatment over time was estimated based on time to treatment discontinuation (TTD) data from the clinical trials MMY3004 (DVd, RRMM) and MMY3003 (DRd, RRMM) using parametric distribution based on time-to-event analysis. Recommended parametric distributions for the DVd and DRd RRMM models are presented in 0.

Treatment dosing schedules are modelled accurately, using a weekly cycle length

in the model. If a treatment or set of treatments as part of a daratumumab SC regimen are recommended only for up to a fixed duration, drug acquisition and administration costs for those treatments are accrued only up to the maximum fixed duration, unless treatment discontinuation occurs earlier. For example, in the treatment of a patient with RRMM with DVd, the dosing schedule is set such that bortezomib (V) and dexamethasone (d) are only administered for a maximum of up to 24 weeks; hence, their acquisition and administration costs are only accrued for up to 24 weeks, while the acquisition and administration costs of daratumumab (D) are accrued for the time patients remain on treatment, based on the TTD parametric estimator for DVd.

4.2.3.4 Subsequent Treatment Costs (Cost Utility Analysis)

After patients progress on any of the comparators, it is possible to model postprogression treatment costs. Continuing on subsequent treatment after disease progression is a comparator-specific model parameter, the proportion of patients receiving subsequent treatments was available for the two main comparators in the MMY 3003 trial (i.e. DRd and Rd) and MMY 3004 trial (i.e. DVd and Vd). In the base-case analysis, the proportion of patients continuing on subsequent treatment was 93.3% [39] and 100.0% [39] for DRd (SC) and Rd, respectively, and 82.2% [40] and 100.0% [40] for DVd (SC) and Vd, respectively.

Subsequent treatment costs were derived using the Japanese MDV database (May 2021 data cut) following the protocol outlined on Table L1 (Appendix L). It was assumed that patients would incur the cost for as long as they are in the post-progression survival health state. Annualized drug and administration costs were converted to weekly cost in the model analysis based on the method outlined on Table G1 (Appendix G) and are presented on Table G2 (Appendix G).

4.2.3.5 Adverse Event Costs

The model allows the user to enter individual unit costs of managing infusionrelated reaction (IRR) and non-IRR adverse events (AEs). Adverse events related to IRR were based on a micro costing approach derived from the literature [41] and AEs related to non-IRR were obtained from the MDV data base (2021-May cut).

4.2.3.5.1 Infusion-Related Reactions (IRR)

The unit cost for the treatment of IRR as AE was calculated based on the information presented in Table 4-10.

• Table 4-10 Unit Cost Per Administration for IRR Treatment

Product Name	Dosage	Number Of Desse	Unit Cost Per
		Per Administration	Administration
			(Yen)
Modrol Tablet 4 mg	60 mg/day for	15 tablets/day	000
wear or rablet 4 mg	4 days	× 4 days	000

4.2.3.5.2 All Adverse Events (Cost Utility Analysis)

All AE unit costs used in the model are presented in Table 4-11.

• Table 4-11 RRMM Adverse Event Unit Cost

Adverse Event	Cost Per Event (yen)	Source
Anemia		
Diarrhea		
Fatigue		
Febrile Neutropenia		
Hypertension		
Infusion-Related		MDV data (2021-May
Reactions		cut)
Lymphopenia		
Neutropenia		
Peripheral Neuropathy		
Pneumonia		
Thrombocytopenia		

An AE cost was applied as a one-time cost at the start of treatment. This approach has been validated and accepted by health economics experts during advisory boards for previous economic models assessing the cost-effectiveness of daratumumab in MM. Additionally, this approach has also been used in these previous economic models of daratumumab in MM. AE cost per patient per treatment was calculated using the following formula:

AE Cost Per Patient = \sum (Cost of AE event_i * Rate of AE event_{ij})

Where: i = each AE event presented in 4.2.1.2 and j = treatment AE costs applied in the model are presented in Table 4-12.

• Table 4-12 Adverse Event Cost Per Patient Used in Base-Case Analysis

Treatment	AE Cost per Patient
DRd (SC)	
Rd	
DVd (SC)	
Vd	

4.2.3.6 Medical Resource Utilization (Cost Utility Analysis)

Medical resource utilization (MRU) costs were evaluated for each health state separately in the RRMM models and were derived from the Japanese MDV database (May 2021 data cut). In addition, a one-time end of life cost was estimated and applied to patients who died in the model. The methodology for estimating these MRU costs is presented on Table H1 (Appendix H). Compared to the micro-costing approach, which relies on the frequency of resource use reported by a panel of experts, the Japanese HTA guideline prefers the use of real-world claims database as it reflects the actual clinical practice in Japan at a population level [42]. Annualized MRU costs were converted to weekly cost in the model analysis and presented on Table 4-13.

• Table 0-13. Medical Resource Utilization Costs in RRMM

Category	Annual Costs	Weekly Costs	One-Time Cost
PFS cost			
PPS cost			
End of life cost		1	
5. Analytical Results

5.1 Results of the Analysis

Analysis performed

Main analysis: Dara SC vs. Dara IV in Multiple Myeloma patients

■Cost Minimization Analysis (Compare costs as equivalent effects)

Cost-effectiveness analysis (calculate incremental cost-effectiveness ratio)

5.1.1 Incremental cost, effect, and ratio of cost-effectiveness in the base analysis

The results of the cost minimization analysis of Dara SC versus Dara IV are shown below in Table 5-1. In all three combination regimens, Dara SC results in lower total cost compared with Dara IV. The cost saving ranged from ¥443,078 to ¥721,951. Compared with Dara IV, Dara SC reduced total costs by ¥546,091 (weighted average) in the base case.

Regimen (population)		Total Cost	Cost difference (SC-IV)	% of Regi men	Total cost difference
	Dara SC	9,682,869 JPY	-718,434		
and RRMM)	Dara IV (Comparator)	10,401,303 JPY	JPY		
DRd	Dara SC	14,340,450 JPY	-443,228		
(TTE NDMM)*	Dara IV (Comparator)	14,783,678 JPY	JPY		-546,091
DRd	Dara SC	14,340,600 JPY	-443,078		JFT
(RRMM)*	Dara IV (Comparator)	14,783,678 JPY	JPY		
DVd (RRMM)	Dara SC	10,909,818 JPY	-721,951		
	Dara IV				

• Table 5-1 Results of Cost Comparison [base case]

Regimen (population)		Total Cost	Cost difference (SC-IV)	% of Regi men	Total cost difference
	(Comparator)	11,631,769			
	(Comparator)	JPY			

*The dosing schedule is slightly different between TIE NDMM and RRMM in DRd regimen, the cost was calculated separately.

5.1.2 Sensitivity analyses

Sensitivity analysis 1 was performed with the duration of 52 weeks. Sensitivity analysis 2 was performed assuming % of patients receiving Dara SC regimen (due to the improved administration and safety) will not require hospitalization for regimen initiation.

The results of the sensitivity analysis are shown below. The cost savings of Dara SC versus Dara IV were observed in both sensitivity analysis.

Regimen (population)		Total Cost	Cost difference (SC-IV)	% of Regi men	Total cost difference
DVMP (TIE NDMM	Dara SC	14,497,436 JPY	-723,888		
and RRMM)	(Comparator)	JPY	511		
DRd	Dara SC	20,766,657 JPY	-447,093		
(TTE NDMM)*	Dara IV (Comparator)	21,213,750 JPY	JPY		-550,036
DRd	Dara SC	20,766,807 JPY	-446,943		JPT
(RRMM)*	Dara IV (Comparator)	21,213,750 JPY	JPY		
DVd	Dara SC	13,081,863 JPY	-725,816		
(KKIVIIVI)	Dara IV				

• Table 5-2 Results of Cost Comparison [Sensitivity Analysis 1]

Regimen (population)		Total Cost	Cost difference (SC-IV)	% of Regi men	Total cost difference
	(Comparator)	13,807,679			
		JPY			

*The dosing schedule is slightly different between TIE NDMM and RRMM in DRd regimen, the cost was calculated separately.

Regimen (population)		Total Cost	Cost difference (SC-IV)	% of Regi men	Total cost difference
	Dara SC	9,759,092 JPY	-642,211		
and RRMM)	Dara IV (Comparator)	10,401,303 JPY	JPY		
DRd	Dara SC	14,397,567 JPY	-386,111		-
NDMM)*	Dara IV (Comparator)	14,783,678 JPY	JPY		-481,985
DRd	Dara SC	14,397,687 JPY	-385,991		JPY
(RRMM)*	Dara IV (Comparator)	14,783,678 JPY	JPY		
DVd	Dara SC	10,985,848 JPY	-645,921		
(RRMM)	Dara IV (Comparator)	11,631,769 JPY	JPY		

• Table 5-3 Results of Cost Comparison [Sensitivity Analysis 2]

*The dosing schedule is slightly different between TIE NDMM and RRMM in DRd regimen, the cost was calculated separately.

5.1.3 Assessing the validity of the analysis

• MM is a plasmacytic malignant tumor which is a type of white cell, and it is essential to be treated by the multidisciplinary treatment at the department of

hematology as centered in close collaboration with other department for its treatment. From this reason, in the setting of the coefficient for DPC code, it is considered as that MM patients was visiting a special function hospital where facilities and systems are established that can provide advanced medical care, especially in the initial stage of treatment with a new drug. This is the rationale of setting the functional assessment factor I and it is considered as appropriate. For the setting of the basic coefficient and the functional assessment factor II, the conservative approach as taking mean value was applied.

In the setting of the hospitalization rate at the initiation of the treatment, for the management of infusion reaction which was identified as one of the important identified factors for both Dara IV and Dara SC was took into the consideration. In the appropriate use guide, it is recommended as "Patients should be closely monitored for symptoms of infusion reactions during and after treatment with this drug.". In the real world clinical practice, from MDV database analysis, all patients treated with Dara IV were hospitalized at the start of treatment, and the mean length of hospitalization was days (mean as days and median as

days). For Dara SC, setting of the hospitalization rate at the initiation of the treatment, the data from MDV database was used. In the case of Dara SC, considering the MMY3012 study results for the time of onset of initial infusion reactions after administration (median as 1,440 mins), it was considered as appropriate to assume that patients were hospitalized for day to monitor infusion reactions even after the first dose of this drug. As a sensitivity analysis, it was assumed that down of Dara SC patients were not hospitalized at the initiation of the treatment due to convenient administration.

The treatment duration was set from the mean duration of treatment with Dara IV based on the MDV database analysis. Also in an epidemiological data in Japan [43], the median time to next treatment (TTNT) in MM patients aged 80 years or older was 7.8 months, and the median TTNT was 3.8 months for the period 2016 to 2020 years as the treatment started. This setting was considered as appropriate which took into account that the target population for this analysis includes populations in relatively younger age groups. Since the actual duration of treatment with Dara SC is not yet available, the duration of treatment with Dara SC and Dara IV is assumed to be the same based on the non-inferiority result in ORR and PFS from the clinical trial. In the Australian PBAC evaluation the cost-minimisation analysis comparing the annual cost of Dara SC and Dara

IV was performed and was considered appropriate. Therefore, as a sensitivity analysis, an analysis with a treatment duration of 1 year was also performed.

Population	Multiple Myeloma		
Comparative			
Control			
ICER reference	Liquel products Droducts requiring consideration		
ranges			
	Cost reduction or dominant		
Interval	□ 5 million yen or less (7.5 million yen or less)		
considered to	\Box > 5 million yen (> 7.5 million yen) and \leq 7.5 million yen		
have the highest	(≤ 11.25 million yen)		
probability of	\Box > 7.5 million yen (> 11.25 million yen) and \leq 10 million		
belonging to the	yen (≤ 15 million yen)		
ICER	□ > 10 million yen (> 15 million yen)		
	Equivalent (or inferior) efficacy and high cost		
Descen for such	It was shown to be cost saving in total costs in the base		
iudamont	case as well as the 2 sensitivity analysis that were		
Judgment	performed.		

5.1.4 Interpretation of Analysis Results

5.1.5 Price Adjustment Rate Weight

本剤の追加効能である全身性 AL アミロイドーシスについて、費用対効果評価の対象として指 定され現在企業分析を実施中である。本剤の各効能の患者数と患者割合を以下に示す。

本剤の対象集団	患者数(人)	患者割合
MM	6,900	
未治療の全身性 AL ア	[44]	
ミロイドーシス**		
Total		

*悪性腫瘍; **指定難病

5.1.6 Price increases

Not applicable

5.2 Analysis Including Public Nursing Care Expenses and Productivity loss [only if applicable]

Not applicable

5.3 Other Analyses

5.3.1 Other analysis: cost difference from HCP time perspective.

One of the important benefits of Dara SC is to reduce the infusion burden of Dara IV. A Time and Motion study was conducted to quantify this benefit.

5.3.1.1 Result

From the Time and Motion study [5], the breakdown of the time required from different types of HCPs in the first and a subsequent drug administration visit for Dara SC and Dara IV were acquired as following.

		HCP Time per	Time difference per		
	intervention	administration	administration (SC IV)		
		(min)			
First	Dara SC	96.3			
infusion/injection	Dara IV	245.0	-169.6 min (-2.8 hours)		
	(Comparator)	205.9			
Subcoquent	Dara SC	90.4			
administration	Dara IV	170.0	-88.8 min (-1.5 hours)		
aurminstration	(Comparator)	1/9.2			

• Table 5-4 HCP time per administration visit

To convert the HCP time into monetary term, the average hourly wage for the corresponding type of Japan HCP were applied. The detail of the analysis was provided in Appendix K.

• Table 5-5 Cost per administration by converting the time to monetary term

	intervention	Cost per the	Cost difference	
	Intervention	administration	(SC-IV)	
First	Dara SC	7,928 JPY		
FIFSt	Dara IV	21 120 JDV	-13,211 JPY	
musion/mjection	(Comparator)	21,139 JP1		

Subsequent	Dara SC	7,450 JPY	
administration	Dara IV	13 016 IDV	-6,466 JPY
dummistration	(Comparator)	13,710 JF1	

5.3.1.2 Interpretation of Analysis Results

The analysis results provided an additional evaluation on HCP time/cost saving that contribute to overall health care system efficiency.

5.3.2 Other analysis: CUA (Scenario analysis)

5.3.2.1 Incremental cost, effect, and ratio of cost-effectiveness

The results of the analysis are summarized and described in detail in the table below for each analysis population.

Daratumumab in Combination with Bortezomib and Dexamethasone Subcutaneous Injection (DVd SC) vs Bortezomib and Dexamethasone (Vd) in Patients with RRMM

Total discounted QALYs gained are 3.99 years for DVd (SC) and 2.69 years for Vd. The incremental QALYs gained is 1.30 years, which indicates that DVd (SC) is a more effective treatment than Vd. Total discounted costs are **series** yen for DVd (SC) and **series** yen for Vd. The incremental cost is **series** yen. The ICER of DVd (SC) versus Vd is calculated to be **series** yen/QALY (Table

5-6). Details of cost breakdown is presented in Table 5-7.

Regimen	Total QALYs	Incrementa I QALYs	Total Costs (yen)	Incremental Costs (yen)	ICER (yen/QALY)
DVd	3.99	1.30			
Vd	2.69				

• Table 5-6 Summary of Analytical Results (RRMM DVd model)

• Table 5-7 Details of Cost Breakdown (RRMM DVd model)

	Technology Evaluated (yen)	Comparative Control Technology (yen)
Progression-Free	Γ	
Drug costs		
Administration costs		
Medical resource use costs		
Adverse event costs		
Post-Progression		
Subsequent treatment drug		
costs		
Subsequent treatment		
administration costs		
Medical resource use costs		
End of life costs		
Total Costs		

2) Daratumumab in Combination with Lenalidomide and Dexamethasone Subcutaneous Injection (DRd SC) vs Lenalidomide and Dexamethasone (Rd) in Patients with RRMM

Total discounted QALYs gained are 5.54 years for DRd (SC) and 4.33 years for Rd. The incremental QALYs gained is 1.20 years, which indicates that DRd (SC) is a more effective treatment than Rd. Total discounted costs are for DRd (SC) and for Rd. The incremental cost is for CLA (SC) and for Rd. The incremental cost is for CLA (SC) versus Rd is calculated to be for CLA (QALY (Table 5-8). Details of cost breakdown are presented in Table 5-9.

• Table 5-8 Summary of Analytical Results (RRMM DRd model)

	Total	Increment	Total	Increment	ICER
	QALY		Costs	al Costs	(yen/QALY
	S	al QALTS	(yen)	(yen))
Technology	5 5 4	1 20			
Evaluated	5.54	1.20			
Comparativ					
e Control	4.33				
Technology					

• Table 5-9 Details of Cost Breakdown (RRMM DRd model)

	Technology Evaluated (yen)	Comparative Control Technology (yen)
Progression-Free		
Drug Costs		
Administration Costs		
Medical Resource Use Costs		
Adverse Event Costs		
Post-Progression		
Subsequent Treatment Drug Costs		
SubsequentTreatmentAdministration Costs		
Medical Resource Use Costs		
End Of Life Costs		
Total Costs		

5.3.2.2 One-Way Sensitivity Analysis

One-way sensitivity analysis (OWSA) was conducted for key model parameters. In the absence of the 95% confidence intervals, an standard error (SE) of 10% of the base-case estimate was assumed for each parameter, except for discount rates for health and costs which were varied from 0% to 4% per the Japan HTA guidelines.

Daratumumab in Combination with Bortezomib and Dexamethasone Subcutaneous Injection (DVd SC) vs Bortezomib and Dexamethasone (Vd) in Patients with RRMM

Table O1 (Appendix O) presents a list of parameters included in the OWSA, their ranges, and the impact on the ICER. Figure 5-1 presents the 10 most influential parameters as a tornado diagram.

 Figure 5-1 Tornado Diagram of 10 Most Influential Parameters on the ICER of DVd (SC) vs. Vd

2) Daratumumab in Combination with Lenalidomide and Dexamethasone Subcutaneous Injection (DRd SC) vs Lenalidomide and Dexamethasone (Rd) in Patients with RRMM

Table O2 (Appendix O) presents a list of parameters included in the OWSA, their ranges, and the impact on the ICER. Figure 5-2 presents the 10 most influential parameters as a tornado diagram.

 Figure 5-2 Tornado Diagram of 10 Most Influential Parameters on the ICER of DRd (SC) vs. Rd

5.3.2.3 Internal validity

The model was assessed by an external peer reviewer not involved with the original programming. Throughout the validation process a comprehensive and rigorous quality check was fulfilled, including validating the logical structure of the model, mathematical formulas, sequences of calculations, and the values of numbers supplied as model inputs. Unexpected model behavior, implementation and typing errors were all identified by this review. The appropriateness of distributions used in the probabilistic analysis of the model was also checked. Following the validation, correction of identified errors or bugs was incorporated in the revised model.

5.3.2.4 External validity

As external validation, the model's survival predictions were also checked against data observed in the clinical trials used as data sources. The estimation yielded from the model is appropriate in comparison to existing other clinical data.

5.3.2.5 Interpretation of Analysis Results

This analysis only focused on a subset of Multiple Myeloma patients, RRMM, when comparing to Vd and Rd. As it is agreed that the main evaluation focuses on a different population and comparator, this analysis was served as supplementary analysis.

<u>6. 再分析用のデータ</u>

使用したソフトウェア	バージョン	ファイル名	提出メディア
Microsoft® Excel® for Microsoft 365 MSO	Version 2108 (Build 14326.20600)	Daratumumab_CMA_JP_ MM_v1.0	Email
Microsoft® Excel® for Microsoft 365 MSO	Version 2108 (Build 14326.20600)	Daratumumab_Cost difference from HCP time_v1.0	Email
Microsoft® Excel® for Microsoft 365 MSO	Version 2108 (Build 14326.20600)	Daratumumab_PSM_JP_ RRMM_DVd_v5.0	Email
Microsoft® Excel® for Microsoft 365 MSO	Version 2108 (Build 14326.20600)	Daratumumab_PSM_JP_ RRMM_DRd_v5.0	Email

<u>7. 実施体制</u>

該当せず

<u>8. 参考文献</u>

- National Cancer Center. Center for Cancer Control and Information Service [in Japanese]. Available from: https://ganjoho.jp/reg_stat/statistics/stat/summary.html. Accessed January 13, 2021.
- Ozaki S, Handa H, Saitoh T, Murakami H, Itagaki M, Asaoku H, et al. Evaluation of the revised international staging system (R-ISS) in Japanese patients with multiple myeloma. Ann Hematol. 2019;98(7):1703–1711.
- 3. Kantar Health. CancerMpact. 2020. Unpublished.
- 4. Janssen. The 6th Periodic Safety Report for DARZALEX (survey period completion date: November 15, 2020) [in Japanese]. Unpublished.
- Slavcev M, Spinelli A, Absalon E, Masterson T, Heuck C, Lam A, De Cock E. Results of a Time and Motion Survey Regarding Subcutaneous versus Intravenous Administration of Daratumumab in Patients with Relapsed or Refractory Multiple Myeloma. Clinicoecon Outcomes Res. 2021 Jun 8;13:465-473.
- Handa H, Ishida T, Ozaki S, Mori A, Kato K and Iida S. Real world treatment patterns and clinical outcomes in multiple myeloma patients from the MDV claims database in Japan. The 46th Annual meeting of the Japanese Society of Myeloma (P-22). Presentation from the 46th Annual meeting of the Japanese Society of Myeloma (JSM 2021). JSM: May 29-30, 2021; Fukushima, Japan.
- Mateos MV, Nahi H, Legiec W, Grosicki S, Vorobyev V, Spicka I, et al. Subcutaneous versus intravenous daratumumab in patients with relapsed or refractory multiple myeloma (COLUMBA): a multicentre, open-label, non-inferiority, randomised, phase 3 trial. Lancet Haematol. 2020 May 1;7(5):e370-80.
- Palumbo A, Chanan-Khan A, Weisel K, Nooka AK, Masszi T, Beksac M, et. al. Daratumumab, Bortezomib, and Dexamethasone for Multiple Myeloma. N Engl J Med. 2016 Aug 25;375(8):754-66.
- Lu J, Fu W, Li W, Hu H, An G, Wang Y, et. al. Daratumumab, bortezomib, and dexamethasone versus bortezomib and dexamethasone in Chinese patients with relapsed or refractory multiple myeloma: Phase 3 LEPUS

(MMY3009) study. Clin Lymphoma Myeloma Leuk. 2021 Sep; 21(9): e699-709.

- Dimopoulos MA, Oriol A, Nahi H, San-Miguel J, Bahlis NJ, Usmani SZ, et. al. Daratumumab, Lenalidomide, and Dexamethasone for Multiple Myeloma. N Engl J Med. 2016 Oct 6;375(14):1319-1331.
- Usmani SZ, Mateos MV, Nahi H, Grosickiet S, Vorobyev VI, Spicka I, et. al. Randomized, Open-Label, Non-Inferiority, Phase 3 Study of Subcutaneous (SC) Versus Intravenous (IV) Daratumumab (DARA) Administration in Patients with Relapsed or Refractory Multiple Myeloma: Columba Update. Abstract presented at 61st ASH Annual Meeting. Orlando United States. 134(Supplement 1): 1865; 2019.
- Iida S, Ishikawa T, Min CK, Kim K, Yeh SP, Usmani SZ, et. al. Subcutaneous daratumumab in Asian patients with heavily pretreated multiple myeloma: subgroup analyses of the noninferiority, phase 3 COLUMBA study. Ann Hematol. 2021 Apr; 100(4): 1065-1077.
- Mateos MV, Usmani SZ, Grosicki S, Vorobyev VI, Spicka I, Hungria VTM, et. al. Randomized, Open-Label, Non-Inferiority, Phase 3 Study of Subcutaneous (SC) Versus Intravenous (IV) Daratumumab (DARA) Administration in Patients (Pts) with Relapsed or Refractory Multiple Myeloma (RRMM): Body Weight Subgroup Analysis of Columba. Proceedings of the 61st ASH Annual Meeting; Dec 7-10; Orlando, United States; 134(Supplement 1): 1906; 2019.
- Usmani SZ, Mateos MV, Nahi H, Grosickiet S, Vorobyev VI, Spicka I, et. al. Randomized, Open-Label, Non-Inferiority, Phase 3 Study of Subcutaneous (SC) Versus Intravenous (IV) Daratumumab (DARA) Administration in Patients with Relapsed or Refractory Multiple Myeloma: Columba Update. Proceedings of the 61st ASH Annual Meeting; Dec 7-10; Orlando, United States; 134(Supplement 1): 1865; 2019.
- Kaiser M, Mateos MV, Usmani SZ, Grosicki S, Vorobyev V, Spicka I, et. al. Phase 3, open-label, non-inferiority study of subcutaneous versus intravenous daratumumab in patients with relapsed or refractory multiple myeloma: Body weight subgroup analysis of Columba. Proceedings of the 60th Annual Scientific Meeting of the British Society for Haematology; Apr 27 – 29; Birmingham, United Kingdom; 189(Supplement 1): 22; 2020.

- Mateos MV, Nahi H, Legiec W, Grosicki S, Vorobyev V, Spicka I, et. al. Efficacy and safety of the randomized, open-label, non-inferiority, phase 3 study of subcutaneous (SC) versus intravenous (IV) daratumumab (DARA) administration in patients (pts) with relapsed or refractory multiple myeloma (RRMM): COLUMBA. Proceedings of the 2019 ASCO Annual Meeting; May 31-June 4; Chicago, IL, United States; 37(Supplement 15); 2019.
- Mateos MV, Nahi H, Legiec W, Grosicki S, Vorobyev V, Spicka I, et. al. Randomized, open-label, non-inferiority, phase 3 study of subcutaneous (SC) versus intravenous (IV) daratumumab (DARA) administration in patients with relapsed or refractory multiple myeloma: COLUMBA. Proceedings of the 24th Congress of the European Hematology Association (EHA); Jun 13 – 16; S823; 2019.
- Mateos MV, Sonneveld P, Hungria V, Nooka AK, Estell JA, Barreto W, et. al. Daratumumab, Bortezomib, and Dexamethasone Versus Bortezomib and Dexamethasone in Patients With Previously Treated Multiple Myeloma: Three-year Follow-up of CASTOR. Clin Lymphoma Myeloma Leuk. 2020 Aug; 20(8):509-18.
- Spencer A, Lentzsch S, Weisel K, Avet-Loiseau H, Mark TM, Spicka I, et. al. Daratumumab plus bortezomib and dexamethasone versus bortezomib and dexamethasone in relapsed or refractory multiple myeloma: updated analysis of CASTOR. Haematologica. 2018 Dec; 103(12): 2079-87.
- Weisel K, Spencer A, Lentzsch S, Avet-Loiseau H, Mark TM, Spicka I, et. al. Daratumumab, bortezomib, and dexamethasone in relapsed or refractory multiple myeloma: subgroup analysis of CASTOR based on cytogenetic risk. J Hematol Oncol. 2020 Aug 20;13(1):115.
- 21. Hungria V, Beksac M, Weisel KC, Nooka AK, Masszi T, Spicka I, et. al. Health-related quality of life maintained over time in patients with relapsed or refractory multiple myeloma treated with daratumumab in combination with bortezomib and dexamethasone: results from the phase III CASTOR trial. Br J Haematol. 2021 May; 193(3):561-9.
- Weisel KC, Sonneveld P, Mateos MV, Hungria V, Spencer A, Estell J, et.
 al. Efficacy and Safety of Daratumumab, Bortezomib, and Dexamethasone (D-Vd) Versus Bortezomib and Dexamethasone (Vd) in

First Relapse Patients (pts) with Multiple Myeloma (MM): Four-Year Update of CASTOR. Proceedings of the 61st ASH Annual Meeting; Dec 7-10; Orlando, United States; 134(Supplement 1): 1392; 2019.

- Weisel K, Spencer A, Lentzsch S, Avet-Loiseau A, Mark TM, Spicka I, et. al. Efficacy and safety of daratumumab, bortezomib, and dexamethasone (D-Vd) in relapsed or refractory multiple myeloma (RRMM): Updated subgroup analysis of CASTOR based on cytogenetic risk. Proceedings of the 24th Congress of the European Hematology Association (EHA); Jun 13 – 16; PF596; 2019.
- Bahlis NJ, Dimopoulos MA, White DJ, Benboubker L, Cook G, Leiba M, et. al. Daratumumab plus lenalidomide and dexamethasone in relapsed/refractory multiple myeloma: extended follow-up of POLLUX, a randomized, open-label, phase 3 study. Leukemia. 2020 Jul; 34(7): 1875-84.
- Kaufman JL, Dimopoulos MA, White D, Benboubker L, Cook G, Leiba M, et. al. Daratumumab, lenalidomide, and dexamethasone in relapsed/refractory myeloma: a cytogenetic subgroup analysis of POLLUX. Blood Cancer J. 2020 Nov 3;10(11):111.
- Dimopoulos MA, San-Miguel J, Belch A, White D, Benboubker L, Cook G, et. al. Daratumumab plus lenalidomide and dexamethasone versus lenalidomide and dexamethasone in relapsed or refractory multiple myeloma: updated analysis of POLLUX. Haematologica. 2018 Dec; 103(12): 2088-96.
- 27. Suzuki K, Dimopoulos MA, Takezako N, Okamoto S, Shinagawa A, Matsumoto M, et. al. Daratumumab, lenalidomide, and dexamethasone in East Asian patients with relapsed or refractory multiple myeloma: subgroup analyses of the phase 3 POLLUX study. Blood Cancer J. 2018 May 1;8(4):41.
- Plesner T, Dimopoulos MA, Oriol A, San-Miguel J, Bahlis NJ, Rabin N, et. al. Health-related quality of life in patients with relapsed or refractory multiple myeloma: treatment with daratumumab, lenalidomide, and dexamethasone in the phase 3 POLLUX trial. Br J Haematol . 2021 Jul; 194(1): 132-9.
- 29. Kaufman JL, Usmani SZ, San-Miguel J, Bahlis NJ, White DJ, Benboubker L, et. al. Four-Year Follow-up of the Phase 3 Pollux Study of

Daratumumab Plus Lenalidomide and Dexamethasone (D-Rd) Versus Lenalidomide and Dexamethasone (Rd) Alone in Relapsed or Refractory Multiple Myeloma (RRMM). Proceedings of the 61st ASH Annual Meeting; Dec 7-10; Orlando, United States; 134(Supplement 1): 1866, 2019.

- Bahlis N, Dimopoulos MA, White DJ, Benboubker L, Cook G, Leiba M, et al. Three-Year Follow up of the Phase 3 POLLUX Study of Daratumumab Plus Lenalidomide and Dexamethasone (D-Rd) Versus Lenalidomide and Dexamethasone (Rd) Alone in Relapsed or Refractory Multiple Myeloma (RRMM). Proceedings of the 61st ASH Annual Meeting; Dec 7-10; Orlando, United States; 134(Supplement 1): 1996; 2019.
- Dimopoulos MA, San-Miguel J, White D, Benboubker L, Cook G, Leiba M, et. al. Efficacy and safety of daratumumab, lenalidomide, and dexamethasone (D-Rd) in relapsed or refractory multiple myeloma (RRMM): updated subgroup analysis of POLLUX based on cytogenetic risk. Proceedings of the 24th Congress of the European Hematology Association (EHA); Jun 13 – 16; PF596; 2019.
- 32. Ministry of Health Labour and Welfare. List of products listed in the NHI Price list - Injectable drugs (1st November 2021 edition) [in Japanese]. Available
 from:

https://www.mhlw.go.jp/topics/2021/04/dl/tp20210812-01_02.pdf

 33. Ministry of Health Labour and Welfare. List of products listed in the NHI Price list - Oral medicines (1st November 2021 edition) [in Japanese]. Available

https://www.mhlw.go.jp/topics/2021/04/dl/tp20211101-01_01.pdf

- Ministry of Health, Labour and Welfare. Summary of Medical Fee Revision in FY 2020 (Technical Matters). Available from: https://www.mhlw.go.jp/content/12400000/000603946.pdf
- 35. Ministry of Health, Labour and Welfare. Diagnosis Procedure Combination (DPC) Electronic Score Sheet (updated November 24, 2021). Available from: https :// www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000198757 _00003.html
- 36. Ministry of Health, Labour and Welfare. Breakdown of Functional Assessment Factor II (by medical institution) As of April 1, 2020. Available
 https://www.mblw.go.ip/content/12404000/000640466.pdf

https://www.mhlw.go.jp/content/12404000/000640466.pdf

- Latimer NR, Survival analysis for economic evaluations alongside clinical trials--extrapolation with patient-level data: inconsistencies, limitations, and a practical guide. Med Decis Making, 2013. 33(6): p. 743-754.
- 38. van Agthoven M, Segeren CM, Buijt I, et al. A cost-utility analysis comparing intensive chemotherapy alone to intensive chemotherapy followed by myeloablative chemotherapy with autologous stem-cell rescue in newly diagnosed patients with stage II/III multiple myeloma; a prospective randomised phase III study. Eur J Cancer. 2004; 40(8):1159-1169.
- 39. Janssen. MMY3003 IA3 datacut result. January 2018. Unpublished.
- 40. Janssen. MMY3004 IA3 datacut result. January 2018. Unpublished.
- Microcosting approach from the literture 'How to use and concept of new drugs for multiple myeloma' (2017) [In Japanese]: Acetaminophen 1000 mg, Diphenhydramine 50 mg, Methylprednisolone 100 mg IV, Methylprednisolone 20 mg oral.
- Guideline for Preparing Cost-Effectiveness Evaluation to the Central Social Insurance Medical Council. Version 2.0 approved by CSIMC on 20th February, 2019.
- 43 Okayama Y, Takakuwa T, Shimura Yu, Kaneko H, Imada K, Kosugi S et al.Very Elderly patients with myeloma: a multicenter retrospective analysis from Kansai Myeloma Forum. The Annual meeting of the Japanese Society of Hematology in 2021 (OS-1-9 D-1). Presentation from the Annual meeting of the Japanese Society of Hematology in 2021 (JSH 2021). JSH: Sep 23, 2021; Sendai, Japan.
- Shimazaki C. Current diagnosis and treatment of AL amyloidosis in Japan: a nationwide epidemiological survey. Rinsho Ketsueki. 2019; 60: 973-8.
- 45. Dubois D, EF. D. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med.17:863-71.
- 46. Launois R, Reboul-Marty J, Henry B, J B. A cost-utility analysis of secondline chemotherapy in metastatic breast cancer. Docetaxel versus paclitaxel versus vinorelbine. Pharmacoeconomics. 1996; 10(5): 504-21.
- 47. Bacelar MDA, Cooper C, Hyde C, Latimer N, D M. The clinical and costeffectiveness of lenalidomide for people who have received at least one prior therapy with bortezomib (partial review of TA171). Single

Technology Appraisal NIHR HTA Programme (13/07/01). Matrix and Peninsula Technology Assessment Group. 2014.

- 48. Lloyd A, Nafees B, Narewska J, Dewilde S, J W. Health state utilities for metastatic breast cancer. Br J Cancer. 2006;95(6):683-90.
- 49. Japanese Health Insurance Federation for Surgery. Japanese health insurance federation for surgery's draft proposal in 2020 [in Japanese]. 2020.
- Ministry of Health, Labour and Welfare. MHLW basic wage structure survey in 2019 [in Japanese]. Available from: https://www.mhlw.go.jp/toukei/itiran/roudou/chingin/kouzou/z2019/dl /01.pdf

Appendix A: Parameters Used in the Analysis (DVd [SC] vs Vd, Cost Utility Analysis)

• Table A1 RRMM DVd (SC) vs Vd Base-Case Analysis Parameters

Variable Name	Value	95% CI * (If Applicable)	Distribution (If Applicable)	Rationale		
Settings	Settings					
Model Cycle Length	1 week			Based on ISPOR Modeling Good Practices to accurately represent the frequency of clinical events while reducing error		
Time Horizon (Years)	30			Assumed to be a lifetime		
Discount Rate	2.0%			In alignment with Japanese HTA Guidelines		
Age (Years)			Normal	Based on MMY3004 trial [8]		

Variable Name	Value	95% CI * (If Applicable)	Distribution (If Applicable)	Rationale
Patient Body Weight (kg) – mean (SD)			Normal	PMS [4]
Patient Height (m) – mean (SD)			Normal	PMS [4]
Patient Body Surface Area				Calculated based on body weight and height using the DuBois & DuBois algorithm [45]
Intervention	DVd (SC)			
Comparators	Vd			
Clinical Inputs				
Overall Survival: DVd (SC)	Fitted curve		Exponential	Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of

Variable Name	Value	95% CI* (If Applicable)	Distribution (If Applicable)	Rationale
				long-term extrapolation
Overall Survival: Vd	Fitted curve		Exponential	Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation
Progression-Free Survival: DVd (SC)	Fitted curve		Generalized Gamma	Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation
Progression-Free Survival: Vd	KM estimator			Full KM data is available in the MMY3004 trial
Time-To-Treatment Discontinuation: DVd (SC)	Fitted curve		Gompertz	Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation
Time-To-Treatment- Discontinuation: Vd	Fitted curve		Lognormal	Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of

Variable Name	Value	95% CI * (If Applicable)	Distribution (If Applicable)	Rationale
				long-term extrapolation
Subsequent Treatment Specific Probabilities				
DVd (SC)			Normal	Based on MMY 3004 trial – IA3 data cut; Assumed same as DVd (IV) [40]
Vd			Normal	Based on MMY 3004 trial – IA3 data cut [40]
Incidence of AEs Over Time				
Incidence of Anemia : DVd (SC)				Based on MMY3004 trial; Assumed same as DVd (IV) [8]
Incidence of Anemia: Vd				Based on MMY3004 trial

Variable Name	Value	95% CI* (If Applicable)	Distribution (If Applicable)	Rationale
Incidence of Diarrhea : DVd (SC)				Based on MMY3004 trial; Assumed same as DVd (IV) [8]
Incidence of Diarrhea : Vd				Based on MMY3004 trial [8]
Incidence of Fatigue : DVd (SC)				Based on MMY3004 trial; Assumed same as DVd (IV) [8]
Incidence of Fatigue: Vd				Based on MMY3004 trial [8]
Incidence of Febrile Neutropenia : DVd (SC)				Based on MMY3004 trial; Assumed same as DVd (IV) [8]
Incidence of Febrile Neutropenia: Vd				Based on MMY3004 trial [8]
Incidence of Hypertension: DVd (SC)				Based on MMY3004 trial; Assumed same as DVd (IV) [8]

Variable Name	Value	95% CI* (If Applicable)	Distribution (If Applicable)	Rationale
Incidence of Hypertension : Vd				Based on MMY3004 trial [8]
Incidence of Infusion Related Reaction: DVd (SC)				Based on MMY3012 trial [7]
Incidence of Infusion Related Reaction: Vd				
Incidence of Lymphopenia: DVd (SC)				Based on MMY3004 trial; Assumed same as DVd (IV) [8]
Incidence of Lymphopenia : Vd				Based on MMY3004 trial [8]
Incidence of Neutropenia: DVd (SC)				Based on MMY3004 trial; Assumed same as DVd (IV) [8]
Incidence of Neutropenia: Vd				Based on MMY3004 trial [8]

Variable Name	Value	95% CI* (If Applicable)	Distribution (If Applicable)	Rationale
Incidence of Peripheral Neuropathy: DVd (SC)				Based on MMY3004 trial; Assumed same as DVd (IV) [8]
Incidence of Peripheral Neuropathy: Vd				Based on MMY3004 trial [8]
Incidence of Pneumonia: DVd (SC)				Based on MMY3004 trial; Assumed same as DVd (IV) [8]
Incidence of Pneumonia: Vd				Based on MMY3004 trial [8]
Incidence of Thrombocytopenia: DVd (SC)				Based on MMY3004 trial; Assumed same as DVd (IV) [8]
Incidence of Thrombocytopenia: Vd				Based on MMY3004 trial [8]
Drug Costs				

Variable Name	Value	95% CI* (If Applicable)	Distribution (If Applicable)	Rationale	
Daratumumab (SC)	434,209.00 yen	353,289.77-523,347.54	Gamma		
Dexamethasone	29.90 yen	24.33-36.04	Gamma	MHLW list in November 2021 [32][33]	
Bortezomib	134923.00 yen	109,778.74-162,621.27	Gamma		
Drug Administration Costs					
IV Administration % for Bortezomib			Normal	Based on Japan Market Intelligence	
Proportion of Patients Initiating DARA (SC) in Hospital			Normal	MDV database analysis in Appendix L	
Duration of Hospital Stay (Days) DARA (SC)			Normal	MDV database analysis in Appendix L	

Variable Name	Value	95% CI * (If Applicable)	Distribution (If Applicable)	Rationale
Hospitalization Fee (Day 1 - Day 4)			Gamma	
Hospitalization Fee (Day 5 - Day 14)			Gamma	
Hospitalization Fee (Day 15 - Day 21)			Gamma	
DARA (SC) Administration (Outpatient)	200.00 yen	162.73-241.06	Gamma	Ministry of Health Labour and Welfare. Revision of Medical Fee for FY 2020

Variable Name	Value	95% CI * (If Applicable)	Distribution (If Applicable)	Rationale
Non-DARA IV				(Reiwa 2) [in Japanese]
Administration	490.00 yen	398.68-590.59	Gamma	[34]
(Outpatient)				-
Non-DARA SC				
Administration	200.00 yen	162.73-241.06	Gamma	
(Outpatient)				
Oral Drug Initiation	680.00 yen	553.28-819.60	Gamma	
Annual Subsequent Treatment Drug Costs			Gamma	MDV database analysis in
Annual Subsequent Treatment Administration Costs			Gamma	Appendix L
MRU Costs	-		-	
End of Life (One Time Cost)			Gamma	MDV database analysis in Appendix L

Variable Name	Value	95% CI * (If Applicable)	Distribution (If Applicable)	Rationale
Weekly MRU Cost: PFS			Gamma	
Weekly MRU Cost: PPS			Gamma	
Adverse Event Managen	nent Costs			
Anemia			Gamma	
Diarrhea			Gamma	MDV database analysis in
Fatigue			Gamma	Appendix L
Febrile Neutropenia			Gamma	

Variable Name	Value	95% CI* (If Applicable)	Distribution (If Applicable)	Rationale
Hypertension			Gamma	
Infusion Related Reaction			Gamma	Microcosting approach from the literture 'How to use and concept of new drugs for multiple myeloma'(2017)[In Japanese] [41]
Lymphopenia			Gamma	
Neutropenia			Gamma	MDV database analysis in
Peripheral Neuropathy			Gamma	Appendix L
Pneumonia			Gamma	

Variable Name	Value	95% CI* (If Applicable)	Distribution (If Applicable)	Rationale	
Thrombocytopenia			Gamma		
Utility Inputs					
Pre-Progression (PFS)	0.81	0.69-0.95	Lognormal	van Agthoven, 2004 [38]	
Post-Progression (PPS)	0.64	0.56-0.73	Lognormal	van Agthoven, 2004 [38]	
Utility Decrement Due to AE: DVd (SC)			Lognormal	See Appendix F for details	
Utility Decrement Due to AE: Vd			Lognormal	See Appendix F for details	
Abbreviations: AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion; CI = Confidence Interval; DRd =daratumumab in combination with lenalidomide and dexamethasone; IV = Intravenous; Kg = Kilograms; M = meters; RRMM = relapsed/refractory multiple myeloma; SC = Subcutaneous; SD = Standard Deviation					

Variable Name	Value	95% CI * (If Applicable)	Distribution (If Applicable)	Rationale
*For some parameters uncertainty information was not available therefore, 95% confidence intervals (CI) were derived based on the				
underlying distribution of the parameter and the assumption that the standard error was 10% of the base case value. The lower and upper				
bound values of the 95% CI were used in one-way sensitivity analysis (OWSA).				

Appendix B: Parameters Used in the Analysis (DRd [SC] vs Rd, Cost Utility Analysis)

• Table B1 RRMM DRd (SC) vs Rd Base-Case Analysis Parameters

Variable Name	Value	95% CI* (If Applicable)	Distribution (If Applicable)	Rationale	
Settings					
Model Cycle Length	1 week			Based on ISPOR Modeling Good Practices to accurately represent the frequency of clinical events while reducing error	
Time Horizon (Years)	30			Assumed to be a lifetime	
Discount Rate	2.0%			In alignment with Japanese HTA Guidelines	
Age (Years)			Normal	Based on MMY3003 trial [10]	

Variable Name	Value	95% CI * (If Applicable)	Distribution (If Applicable)	Rationale
Patient Body Weight (kg) – mean (SD)			Normal	PMS [4]
Patient Height (m) – mean (SD)			Normal	PMS [4]
Patient Body Surface Area				Calculated based on body weight and height using the DuBois & DuBois algorithm [45]
Intervention	DRd (SC)			
Comparator	Rd			
Clinical Inputs				
Overall Survival: DRd (SC)	Fitted curve		Exponential	Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of
Variable Name	Value	95% CI * (If Applicable)	Distribution (If Applicable)	Rationale
----------------------	--------------	-----------------------------	--	------------------------------
				long-term extrapolation;
				Assumed same as DRd
				(IV) in MMY 3003 trial
				Based on lowest AIC/BIC
Querall Curvival, Dd			Exponential Based on lowest AIC/B goodness-of-fit values and clinical plausibility long-term extrapolation Based on lowest AIC/B Lognormal Based on lowest AIC/B Lognormal and clinical plausibility	goodness-of-fit values
Overall Survival: Ru	Filled curve		Exponential	and clinical plausibility of
				long-term extrapolation
				Based on lowest AIC/BIC
			goodness-of-fit values	
Progression-Free			Lognormal goodness-of and clinical long-term ex Assumed sa (IV) in MMY	and clinical plausibility of
Survival: DRd (SC)	Filled curve			long-term extrapolation;
				Assumed same as DRd
				(IV) in MMY 3003 trial
				Based on lowest AIC/BIC
Progression-Free			goodness-of-f	goodness-of-fit values
Survival: Rd	Fitted curve		Lognormai	and clinical plausibility of
				long-term extrapolation
Time-To-Treatment				Based on lowest AIC/BIC
Discontinuation:	Fitted curve		Exponential	goodness-of-fit values
DRd (SC)				and clinical plausibility of

Variable Name	Value	95% CI * (If Applicable)	Distribution (If Applicable)	Rationale
				long-term extrapolation
Time-To-Treatment- Discontinuation: Rd	Fitted curve		Exponential	Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation
Subsequent Treatment Specific Probabilities				
DRd (SC)			Normal	Based on MMY 3003 trial – IA3 data cut; Assumed same as DRd (IV) [39]
Rd			Normal	Based on MMY 3003 trial – IA3 data cut [39]
Incidence of AEs Over Time				
Incidence of Anemia : DRd (SC)				Based on MMY3003 trial; Assumed same as DRd

Variable Name	Value	95% CI * (If Applicable)	Distribution (If Applicable)	Rationale
				(IV) [10]
Incidence of Anemia : Rd				Based on MMY3003 trial [10]
Incidence of Diarrhea : DRd (SC)				Based on MMY3003 trial [10]; Assumed same as DRd (IV)
Incidence of Diarrhea : Rd				Based on MMY3003 trial [10]
Incidence of Fatigue : DRd (SC)				Based on MMY3003 trial [10]; Assumed same as DRd (IV)
Incidence of Fatigue: Rd				Based on MMY3003 trial [10]
Incidence of Febrile Neutropenia : DRd (SC)				Based on MMY3003 trial [10]; Assumed same as DRd (IV)

Variable Name	Value	95% CI * (If Applicable)	Distribution (If Applicable)	Rationale
Incidence of Febrile Neutropenia: Rd				Based on MMY3003 trial [10]
Incidence of Hypertension: DRd (SC)				Based on MMY3003 trial [10]; Assumed same as DRd (IV)
Incidence of Hypertension : Rd				Based on MMY3003 trial [10]
Incidence of Infusion Related Reaction: DRd (SC)				Based on MMY3012 trial [7]
Incidence of Infusion Related Reaction: Rd				Based on MMY3003 trial [10]
Incidence of Lymphopenia: DRd (SC)				Based on MMY3003 trial [10]; Assumed same as DRd (IV)
Incidence of Lymphopenia: Rd				Based on MMY3003 trial [10]

Variable Name	Value	95% CI * (If Applicable)	Distribution (If Applicable)	Rationale
Incidence of Neutropenia : DRd (SC)				Based on MMY3003 trial [10]; Assumed same as DRd (IV)
Incidence of Neutropenia : Rd				Based on MMY3003 trial [10]
Incidence of Peripheral Neuropathy: DRd (SC)				Based on MMY3003 trial [10]; Assumed same as DRd (IV)
Incidence of Peripheral Neuropathy: Rd	-			Based on MMY3003 trial [10]
Incidence of Pneumonia : DRd (SC)				Based on MMY3003 trial [10]; Assumed same as DRd (IV)
Incidence of Pneumonia : Rd				Based on MMY3003 trial [10]
Incidence of Thrombocytopenia: DRd (SC)				Based on MMY3003 trial [10]; Assumed same as DRd (IV)

Variable Name	Value	95% CI* (If Applicable)	Distribution (If Applicable)	Rationale
Incidence of Thrombocytopenia: Rd				Based on MMY3003 trial [10]
Drug Costs				
Daratumumab (SC)	434,209.00 yen	353,289.77-523,347.54	Gamma	
Dexamethasone	29.90 yen	24.33-36.04	Gamma	MHLW list in November 2021 [32][33]
Lenalidomide	8,085.30 yen	6,578.52-9,745.13	Gamma	
Drug Administration Costs				
Proportion of Patients Initiating DARA (SC) in Hospital			Normal	MDV database analysis in Appendix L

Variable Name	Value	95% CI* (If Applicable)	Distribution (If Applicable)	Rationale
Duration of Hospital Stay (Days) DARA (SC)			Normal	Assumption
Hospitalization Fee (Day 1 - Day 4)			Gamma	
Hospitalization Fee (Day 5 - Day 14)			Gamma	
Hospitalization Fee (Day 15 - Day 21)			Gamma	
DARA (SC) Administration	200.00 yen	162.73-241.06	Gamma	Ministry of Health Labour and Welfare. Revision of

Variable Name	Value	95% CI* (If Applicable)	Distribution (If Applicable)	Rationale
(Outpatient)				Medical Fee for FY 2020
				(Reiwa 2) [in Japanese]
Non-DARA IV				[34]
Administration	490.00 yen	398.68-590.59	Gamma	
(Outpatient)				
Non-DARA SC				
Administration	200.00 yen	162.73-241.06	Gamma	
(Outpatient)				
Oral Drug Initiation	680.00 yen	553.28 - 819.60	Gamma	
Weekly Subsequent				
Treatment Drug Costs			Gamma	MDV database analysis in
Weekly Subsequent				Appendix L
Treatment Administration			Gamma	
Costs				
MRU Costs				

Variable Name	Value	95% CI* (If Applicable)	Distribution (If Applicable)	Rationale
End of Life (One Time Cost)			Gamma	
Weekly MRU Cost: PFS			Gamma	MDV database analysis in Appendix L
Weekly MRU Cost: PPS			Gamma	
Adverse Event Managen	nent Costs			
Anemia			Gamma	
Diarrhea			Gamma	MDV database analysis in Appendix L
Fatigue			Gamma	

Variable Name	Value	95% CI * (If Applicable)	Distribution (If Applicable)	Rationale
Febrile Neutropenia			Gamma	
Hypertension			Gamma	
Infusion Related Reaction			Gamma	Micro costing approach from the literature 'How to use and concept of new drugs for multiple myeloma'(2017) [In Japanese] [41]
Lymphopenia			Gamma	
Neutropenia			Gamma	MDV database analysis in Appendix L
Peripheral Neuropathy			Gamma	

Variable Name	Value	95% CI * (If Applicable)	Distribution (If Applicable)	Rationale
Pneumonia			Gamma	
Thrombocytopenia			Gamma	
Utility Inputs				
Pre-Progression (PFS)	0.81	0.69-0.95	Lognormal	van Agthoven, 2004 [38]
Post-Progression (PPS)	0.64	0.56-0.73	Lognormal	van Agthoven, 2004 [38]
Utility Decrement Due to AE: DRd (SC)			Lognormal	See Appendix F for details
Utility Decrement Due to AE: Rd			Lognormal	See Appendix F for details

Variable Name	Value	95% CI* (If Applicable)	Distribution (If Applicable)	Rationale	
Abbreviations: AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion; CI = Confidence Interval; DRd = daratumumab					
in combination with lenalidomide and dexamethasone; IV = Intravenous; Kg = Kilograms; M = meters; RRMM = relapsed/refractory					
multiple myeloma; SC = Subcutaneous; SD = Standard Deviation					
*For some parameters uncertainty information was not available therefore, 95% confidence intervals (CI) were derived based on the					
underlying distribution of the parameter and the assumption that the standard error was 10% of the base case value. The lower and upper					
bound values of the 95% CI v	were used in one-way	sensitivity analysis (OWSA).			

Appendix C: Time-to-Event Analysis for Progression-Free Survival (PFS)

The recommended distribution to model PFS for each pair of possible comparators is shown in **Table C1**. All relevant data from the fitting exercises, including parameters of the distributions and goodness-of-fit statistics (AIC/BIC) can be found in 0.

• Table C1 Recommended Parametric Distributions for Long-Term Estimation of Progression-Free Survival in the RRMM Models

	Recommended Distribution for PFS	Source/Rationale
DVd (SC)	Generalized Gamma	MMY3004 263 OS events data cut (median follow-up months); Assumed the same as DVd IV; Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation
Vd	KM estimator	MMY3004 263 OS events data cut (median follow-up months); KM estimator used because full follow-up data was available
DRd (SC)	Log-normal	MMY3003 IA3 (median follow-up 32.9 months); Assumed the same as DRd IV; Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long- term extrapolation
Rd	Log-normal	MMY3003 IA3 (median follow-up 32.9 months); Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation

	Recommended Distribution for PFS	Source/Rationale			
Abbreviations: DRd = daratumumab in combination with lenalidomide and dexamethasone; DVd = daratumumab in combination with					
bortezomib and dexamethasone; IV = intravenous; RRMM = relapsed/refractory multiple myeloma; SC = subcutaneous;					

Appendix D: Time-to-Event Analysis for Overall Survival (OS)

The recommended distribution to model OS for each pair of possible comparators is shown in Table D1. All relevant data from the fitting exercises, including parameters of the distributions and goodness-of-fit statistics (AIC/BIC) can be found in 0.

• Table D1 Recommended Parametric Distributions for Long-Term Estimation of Overall Survival in the RRMM Models

	Recommended Distribution for OS	Source/Rationale					
DVd (SC)	Exponential	Jos Source/Rationale MMY3004 263 OS events data cut (median follow-up months); Assum the same as DVd IV; Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation MMY3004 263 OS events data cut (median follow-up months); Based lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation MMY3003 IA3 (median follow-up 32.9 months); Assumed the same as DRd Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation MMY3003 IA3 (median follow-up 32.9 months); Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation					
	Exponential	clinical plausibility of long-term extrapolation					
		MMY3004 263 OS events data cut (median follow-up months); Based on					
Vd	Exponential	Source/Rationale MMY3004 263 OS events data cut (median follow-up months); Assumed the same as DVd IV; Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation MMY3004 263 OS events data cut (median follow-up months); Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation MMY3003 IA3 (median follow-up 32.9 months); Assumed the same as DRd IV; Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation MMY3003 IA3 (median follow-up 32.9 months); Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation MMY3003 IA3 (median follow-up 32.9 months); Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation					
		extrapolation					
		MMY3003 IA3 (median follow-up 32.9 months); Assumed the same as DRd IV;					
DRd (SC)	Exponential	Source/RationaleMMY3004 263 OS events data cut (median follow-up imonths); Assumed the same as DVd IV; Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolationMMY3004 263 OS events data cut (median follow-up imonths); Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolationMMY3003 IA3 (median follow-up 32.9 months); Assumed the same as DRd IV; Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long- term extrapolationMMY3003 IA3 (median follow-up 32.9 months); Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long- term extrapolationMMY3003 IA3 (median follow-up 32.9 months); Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long- term extrapolationMMY3003 IA3 (median follow-up 32.9 months); Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long- term extrapolationMMY3003 IA3 (median follow-up 32.9 months); Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolationIon with lenalidomide and dexamethasone; DVd = daratumumab in combination with s; RRMM = relapsed/refractory multiple myeloma; SC = subcutaneous					
		term extrapolation					
Rd Exponential MMY3003 IA3 (median follow-up goodness-of-fit values and clinic.		MMY3003 IA3 (median follow-up 32.9 months); Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation					
Abbreviations: DRd = daratumumab in combination with lenalidomide and dexamethasone; DVd = daratumumab in combination with bortezomib and dexamethasone; IV = intravenous; RRMM = relapsed/refractory multiple myeloma; SC = subcutaneous							

Appendix E: Time-to-Event Analysis for Time-To-Treatment Discontinuation (TTD)

The recommended distribution to model TTD for each pair of possible comparators is shown in Table E1. All relevant data from the fitting exercises, including parameters of the distributions and goodness-of-fit statistics (AIC/BIC) can be found in Appendix K.

• Table E1. Recommended Parametric Distributions for Long-Term Estimation of Time-to-Treatment Discontinuation in the RRMM Models

	Recommended Distribution for TTD	Source/Rationale				
	Common anto	MMY3004 263 OS events data cut (median follow-up months); Assumed				
DVd (SC)	Gompertz	Source/Rationale MMY3004 263 OS events data cut (median follow-up immonths); Assumed the same as DVd IV; Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation MMY3004 263 OS events data cut (median follow-up immonths); Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation MMY3003 IA3 (median follow-up 32.9 months); Assumed the same as DRd IV; Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation MMY3003 IA3 (median follow-up 32.9 months); Based on lowest AIC/BIC MMY3003 IA3 (median follow-up 32.9 months); Based on lowest AIC/BIC				
		MMY3004 263 OS events data cut (median follow-up months); Based on				
Vd	Lognormal	Source/Rationale MMY3004 263 OS events data cut (median follow-up immonths); Assumed the same as DVd IV; Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation MMY3004 263 OS events data cut (median follow-up immonths); Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation MMY3003 IA3 (median follow-up 32.9 months); Assumed the same as DRd IV; Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation MMY3003 IA3 (median follow-up 32.9 months); Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation MMY3003 IA3 (median follow-up 32.9 months); Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation				
		extrapolation				
		MMY3003 IA3 (median follow-up 32.9 months); Assumed the same as DRd IV;				
DRd (SC)	Exponential	Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of				
		long-term extrapolation				
Rd	Exponential	MMY3003 IA3 (median follow-up 32.9 months); Based on lowest AIC/BIC goodness-of-fit values and clinical plausibility of long-term extrapolation				

	Recommended Distribution for TTD	Source/Rationale				
Abbreviations: DRd =daratumumab in combination with lenalidomide and dexamethasone; DVd = daratumumab in combination with bortezomib and dexamethasone; IV = intravenous; RRMM = relapsed/refractory multiple myeloma; SC = subcutaneous						

Appendix F: Details of QOL Values (Disutility Inputs)

• Table F1. Disutility Inputs for RRMM DRd and DVd Models

Adverse Event	Duration of AE (Days)	Adjusted Disutility Disutility		Source		
Febrile Neutropenia				[46]		
Neutropenia				[47]		
Anemia				[47]		
Thrombocytopenia				[47]		
Lymphopenia				[47]		

Adverse Event	Duration of AE (Days)	Disutility	Adjusted Disutility	Source
Pneumonia				[47]
Diarrhoea				[48]
Fatigue				[48]
Peripheral Neuropathy				[47]
Hypertension				Assume no QoL impact, controlled by medication

Appendix G: Subsequent Treatment Costs in RRMM Models

• Table G1 Protocol for Estimating Subsequent Treatment Costs in RRMM Models

Steps	Description
Step 1	Identify the 3rd MM regimen and its first administration date (D1)
Step 2	Identity the end of timeframe – either the end of follow up or death (D2)
Step 3	Calculate the MM-related drug and administration costs between D1 and D2
Step 4	Annualize the MM-related drug and administrations costs by dividing the cost by patient-year

Category	Annual Costs	Weekly Costs
Drug cost		
Admin cost		

• Table G2 Subsequent Treatment Drug and Administration Costs in RRMM

Appendix H: Medical Resource Utilization

• Table H1 Protocol for Estimating Medical Resource Utilization Costs in the RRMM Models

Steps	Description
PFS	
Step 1	Identify the first diagnosis of MM in the database, then identify the 1st MM regimen following the diagnosis
Step 2	Identify the 2nd MM regimen and its first administration date (D1)
Step 3	Identify the 3rd MM regimen and its first administration date (D2)
Step 4	Exclude patients who had autologous stem cell transplantation within 12 weeks prior to D1 and patients who had allogeneic stem cell transplantation at any time prior to D1
Step 5	Calculate the non-drug costs between D1 and D2, and exclude the following: drug administration cost, and cost associated with managing AEs
Step 6	Annualize the costs by dividing the cost by patient-year
PPS	
Step 1	Identify the end of timeframe – either the end of follow up or death (D3)
Step 2	Calculate the non-drug costs between D2 and D3, and exclude the following: drug administration cost, cost associated with managing AEs, transplant cost, and end of life cost (MRU costs between 30 days from death and death)

Steps	Description					
Step 3	Annualize the costs by dividing the cost by patient-year					
End of Life						
Stop 1	MRU costs between 30 days from death and death, and exclude the following: drug					
Step 1	administration cost, cost associated with managing AEs, and transplant cost					

Appendix I: Progression-Free Survival Distribution Parameters (Cost Utility Analysis)

• Table I1 PFS Distribution Parameters (RRMM) – DRd (SC) and DVd (SC)

Distribution		RRMM	/I (DVd S	C)			RR	MM (DRd	SC)	
	Intercept	Scale ¹	Shape	AIC	BIC	Intercept	Scale ¹	Shape	AIC	BIC
Weibull										
Log-normal										-
Log-logistic										
Exponential										
Generalised	_									
Gamma										
Gompertz										
[1] Gamma va	lue for Gomper	tz Distributi	on							

Distribution		RRMM	(Vd) ²			RRMM (Rd)				
Distribution	Intercept	Scale ¹	Shape	AIC	BIC	Intercept	Scale ¹	Shape	AIC	BIC
Weibull										
Log-normal										
Log-logistic										
Exponential										
Generalised Gamma										
Gompertz								1		
[1] Gamma value for Gompertz Distribution										
[2] Kaplan-Meier Estima	[2] Kaplan-Meier Estimator used because full follow-up time was available									

• Table 12 PFS Distribution Parameters (Cost-Utility | RRMM) – Rd and Vd

Appendix J: Overall Survival Distribution Parameters (Cost Utility Analysis)

• Table J1 OS Distribution Parameters (RRMM) – DRd (SC) and DVd (SC)

Distribution		RRM	M (DVd S	SC)		RRMM (DRd SC)				
	Intercept	Scale ¹	Shape	AIC	BIC	Intercept	Scale ¹	Shape	AIC	BIC
Weibull										
Log-normal										
Log-logistic	_									
Exponential	_									
Generalised	-									-
Gamma										
Gompertz										
[1] Gamma value for Gompertz Distribution										

Distribution		F	RRMM (V	′d)		RRMM (Rd)				
	Intercept	Scale ¹	Shape	AIC	BIC	Intercept	Scale ¹	Shape	AIC	BIC
Weibull										
Log-normal										
Log-logistic										
Exponential										
Generalised Gamma										
Gompertz										
[1] Gamma value for Gompertz Distribution										

• Table J2 OS Distribution Parameters (Cost-Utility | RRMM) – Rd and Vd

Appendix K: Time-to-Treatment Discontinuation Distribution Parameters (Cost Utility Analysis)

Distribution	RRMM (DVd SC)					RRMM (DRd SC)				
	Intercept	Scale ¹	Shape	AIC	BIC	Intercept	Scale ¹	Shape	AIC	BIC
Weibull										
Log-normal										
Log-logistic										
Exponential										
Generalised Gamma										
Gompertz										
[1] Gamma valı	[1] Gamma value for Gompertz Distribution									

• Table K1 TTD Distribution Parameters (RRMM) – DRd (SC) and DVd (SC)

• Table K2 TTD Distribution Parameters (Cost-Utility | RRMM) – Rd and Vd

Appendix L: MDV database analysis

• Table L1 The methodology for MDV database analysis

Item	Description
Data source	Retrospective claims data obtained from the Medical Data Vision (MDV) database were analyzed
	from 01 January 2003 to 31 May 2021. The MDV database comprises standardized health-care
	insurance claims data provided by hospitals in Japan, which is using the Japanese Diagnosis and
	Procedure Combination (DPC) fixed-payment reimbursement system for over 36 million individuals
	since the year 2003 and contains about 30 thousand patients with MM.
Study Design and	• Adult patients with a diagnosis of MM were considered for this analysis. MM diagnosis was
Patient Population	defined as the presence of at least one record with a confirmed MM diagnosis code
	Index diagnosis date was defined as the date on which the patient had first record of confirmed
	MM diagnosis. The baseline period was the 12-month period before the index diagnosis date
	and the follow-up period consisted of \geq 60 days from the index diagnosis date; however, patients
	who died within this 60-day period were followed for <60 days.
Outcomes evaluated	 Proportion of the treatment regimens for each line and the duration of therapy.
	 The rate of hospitalization and the duration of the hospitalization in the treatment.
	 Subsequent treatment drug cost and subsequent treatment administration cost
	Annual MRU cost in PFS/PPS
	MRU cost in End of life (EOL)
	Adverse event cost

Publication	A part of the results was published at the 46th Annual meeting of the Japanese Society of Myeloma
	[6].

Appendix M: Cost per the administration from the perspective of HCP workload

From the Time and Motion study [5], the breakdown of the first and the subsequent administration time for each HCP was acquired as following. By multiplying the wage per time for the corresponding Japan HCP role, the cost per the administration from the perspective of HCP workload was calculated as following.

		Dara SC	Dara IV
HCP role		(minutes)	(minutes)
	First infusion/injection	96.3	265.9
All	Subsequent administration	90.4	179.2
Dharmanaiat	First infusion/injection		
Pharmacist	Subsequent administration		
Pharmacy	First infusion/injection		
technician	Subsequent administration		
Transport	First infusion/injection		
assistant	Subsequent administration		
Descentionist	First infusion/injection		
Receptionist	Subsequent administration		
	First infusion/injection		
Auxiliary nurse	Subsequent administration		
Licensed practical	First infusion/injection		
nurse	Subsequent administration		
Healthcare	First infusion/injection		
Support worker	Subsequent administration		
De siste as durantes	First infusion/injection		
Registered nurse	Subsequent administration		
	First infusion/injection		
Haematologist	Subsequent administration		
Dhishotomist	First infusion/injection		
Phiebolomist	Subsequent administration		

• Table M1 Time required by each HCP role for the administration

	Hourly	Wage per	
HCP role	wage	minute	Source
	(JPY)	(JPY)	
Pharmacist			Pharmacist [49]
Pharmacy technician			Pharmacist [49]
Transport assistant			General hourly wage [50]
Receptionist			General hourly wage [50]
Auxiliary nurse			Registered nurse [50]
Licensed practical nurse			Registered nurse [50]
Healthcare Support			Concret hours upon [E0]
worker			General hourry wage [50]
Registered nurse			Registered nurse [49]
Haematologist			Physician [49]
Phlebotomist			Physician [49]

• Table M2 Wage per time for each HCP role in Japan

Appendix N: Literature of Asian and Japanese-only population

Table N1 List of literature of Asian and Japanese-only population for COLUMBA study

5							
Study name	COLUMBA study						
Bibliographic	lida S, Ishikawa T, Min CK, Kim K, Yeh SP, Usmani						
information	SZ, Mateos MV, Nahi H, Heuck C, Qin X,						
	Parasrampuria DA. Subcutaneous daratumumab in						
	Asian patients with heavily pretreated multiple						
	myeloma: subgroup analyses of the noninferiority,						
	phase 3 COLUMBA study. Annals of hematology.						
	2021 Apr; 100(4): 1065-77.[12]						
Clinicaltrials.gov	NCT03277105						
registry information							
Study sites	Multicenter (147 sites in 18 countries)						
Study enrollment	Oct 31, 2017 to Dec 27, 2018						
period							
Target population	Recruited patients with RRMM who had received at						
	least three previous lines of therapy and had						
	evidence of response to at least one previous						
	treatment regimen.						
Eligibility criteria	 Eligible patients were aged ≥18 years. 						
	Patients had a documented diagnosis of						
	multiple myeloma according to the International						
	Myeloma Working Group (IMWG) diagnostic						
	criteria.						
	Patients with relapsed or refractory multiple						
	myeloma had received at least three previous						
	lines of therapy, including a proteasome						
	inhibitor and an immunomodulatory drug, or						
	were double refractory to both a proteasome						
	inhibitor and an immunomodulatory drug.						
	Patients had evidence of response to at least						
	one previous treatment regimen.						

	Pretreatment clinical laboratory values during					
	the screening phase were required to show					
	adequate bone marrow, liver, and kidney					
	function.					
	Women of childbearing potential had to agree					
	to use two methods of birth control at least 4					
	weeks before first treatment dose and had to					
	have a negative pregnancy test 2 weeks before					
	randomization.					
Key exclusion	Previous treatment with daratumumab or other					
criteria	anti-CD38 therapies.					
	Anti-myeloma treatment within 2 weeks or five					
	pharmacokinetic half-lives before					
	randomization.					
	Receipt of an autologous stem cell transplant					
	within 12 weeks before randomization.					
	 Malignancies other than multiple myeloma, 					
	unless all treatment of that malignancy had					
	been completed at least 2 years before consent					
	and the patient had no evidence of the disease.					
	 Meningeal involvement of the myeloma. 					
	Chronic obstructive pulmonary disease with a					
	forced expiratory volume in 1 s of less than					
	50% of the predicted normal.					
	 Moderate or severe persistent asthma or a 					
	history of asthma within the last 2 years.					
	 Clinically significant cardiac disease. 					
	 Seropositivity for HIV, hepatitis B, or hepatitis 					
	С.					
	 Known allergies to study-relevant compounds 					
	and any other conditions that might interfere					
	with the study protocol.					
Details of	 Dara SC group: n=263 					
interventional	 Asian patients: n=30 					
method	Dosing: 1800 mg of daratumumab co-formulated					
---------------------	---	--	--	--	--	--
	with rHuPH20 2000 U/mL.					
	Patients received daratumumab once weekly (cycles					
	1 and 2), every 2 weeks (cycles 3-6), and then					
	every 4 weeks (28-day cycles).					
Details of	• Dara IV group: n=259					
comparators	Asian patients: n=37					
	Dosing: 16 mg/kg of daratumumab					
	Patients received daratumumab once weekly (cycles					
	1 and 2), every 2 weeks (cycles 3–6), and then					
	every 4 weeks (28-day cycles).					
Study design	Randomized, phase 3 trial					
	Randomization was stratified based on baseline					
	bodyweight, previous therapy lines, and					
	myeloma type (IgG vs non-IgG).					
Blinding method	Open label					
Primary endpoint	Overall response (partial response or better)					
Key secondary	Proportion of patients with very good partial					
endpoints	response or better and complete response or					
	better					
	Time to response					
	Duration of response					
	Progression-free survival					
	Overall survival					
	Time to next therapy					
	Patient reported treatment satisfaction					
	Incidence of infusion-related reactions					
Statistical methods	• The Kaplan-Meier method was used to estimate					
	time-to-event distributions.					
	Hazard ratios and 95% CIs were estimated					
	using a stratified Cox proportional hazards					
	regression model.					
	The infusion-related reaction rate and rates of					
	very good partial response or better were					

	compared between groups using a stratified					
	Cochran-Mantel-Hansel test.					
Sample size	Dara SC Asian patients (n=30):					
	 Korean n=4 					
	• Taiwanese n=8					
	 Japanese n=18 					
	Dara IV Asian patients (n=37):					
	 Korean n=7 					
	 Taiwanese n=6 					
	• Japanese n=24					
Follow-up period	Median, 7.5 months (IQR 6.5-9.3)					
Main background	Dara SC group vs IV group					
factors of subjects	 Male, n (%):20 (54.1) vs 15 (50.0) 					
	 Median age (range), years: 70.0 (33–83) vs 					
	70.5 (48–84)					
	• Median weight, kg: 56.7 (32.8–93.0) vs 60.1					
	(40.5–83.2)					
	Cytogenetic risk, n (%)					
	• Standard risk: 29 (78.4) vs 18 (69.2)					
	• High risk: 8 (21.6) vs 8 (30.8)					
Efficacy in Asian	ORR					
population	An overall response was observed in 66.7%					
	(n=20/30) patients in the SC group (median NR,					
	95% CI 7.39-NE) and 43.2% (n=16/37) in the IV					
	group (median 10.41, 95% CI 8.31-NE)					
	PFS					
	• Median PFS was 11.1 vs 6.6 months for SC					
	group vs IV group, respectively (HR 0.62,					
	95% CI 0.32–1.22, p=0.16).					
	6-month and 12-month PFS rates were					
	72.4% versus 50.3% and 46.6% versus					
	28.3%, respectively.					
Safety in Asian	IRR					
population	 Dara SC group: 10%, n=3/30 					

	• Dara IV group: 18.9% $n = 7/37$				
	• OR 0.48.95% CL 0.11_2.03. $n=0.3120$				
	• OR, 0.48; 95% CI, 0.11–2.03; p=0.3120				
	Grade 3/4 TEAEs				
	 Dara SC group: 53.3% (n=16) 				
	• Dara IV group: 56.8% (n=21)				
	SAEs				
	 Dara SC group: 13.3% (n=4) 				
	• Dara IV group: 40.5% (n=15)				
PRO in Asian	Patients in the SC group responded more positively				
population	to individual components of following parameters vs				
	IV group:				
	 Satisfied with form of cancer therapy 				
	Taking cancer therapy as difficult as expected				
Efficacy in Japanese	ORR				
population	An overall response was observed in 61.1%				
	(n=11/18) patients in the SC group (Median- NR.				
	95% CI 4.53-NE) and 54.2% (n=13/24) in the IV				
	group (median 10.41, 95% CI 8.31-10.41)				
	PFS				
	Median PFS was 8.3 months with DARA SC				
	versus 9.3 months with DARA IV (HR 0.89				
	05% CL 0.36, 2.16; p= 0.7970)				
	7570 CI, $0.30-2.10$, $\mu = 0.7070$				
	70.6% versus 54.2% and 34.3% versus 0%,				
Safaty in Jananasa					
salety in Japanese	The IDD rate was the same for patients receiving				
population	The IRR rate was the same for patients receiving				
	DARA SC and DARA IV IN Japanese conort.				
	• Dara SC group: 16.7%, n=3/18				
	• Dara IV group: 16.7%, n=4/24				
	Grade 3/4 TEAEs				
	• Dara SC group: n=10 (55.6%)				
	• Dara IV group: n=10 (41.7%)				
	The rates of grade 3/4 neutropenia (27.8% for				

	DARA SC and 0% for DARA IV, respectively),					
	lymphopenia (16.7% and 8.3%) and leukopenia					
	(11.1% and 4.2%) were higher in the Japanese-					
	only cohort as compared to Asian cohort.					
	Grade 3/4 anemia was reported at a higher rate					
	with DARA SC (22.2%) compared to the global					
	COLUMBA safety population and occurred in no					
	patients receiving DARA IV.					
	SAEs					
	• Dara SC group: n=2 (11.1%)					
	• Dara IV group: n=7 (29.2%)					
PRO in Japanese	Mean scores of CTSQ assessment were similar					
population	between the DARA SC and DARA IV groups.					
Conclusion	Efficacy and safety of DARA SC in Asian patients					
	and Japanese sub-analysis were generally					
	consistent with those of the global COLUMBA					
	population.					

• Figure N1 Progression free survival for (A) Asian and (B) Japanese-only population

Dara: daratumumab; IV: intravenous; PFS: progression-free survival; SC: daratumumab subcutaneous Source: Iida et al. 2021[12]

• Table N2 List of literature of East Asian (Japanese, Korean, and Taiwanese) population for POLLUX study

Study name	POLLUX study				
Bibliographic	Suzuki K, Dimopoulos MA, Takezako N, Okamoto S,				
information	Shinagawa A, Matsumoto M, Kosugi H, Yoon SS,				
	Huang SY, Qin X, Qi M. Daratumumab,				
	lenalidomide, and dexamethasone in East Asian				
	patients with relapsed or refractory multiple				
	myeloma: subgroup analyses of the phase 3				
	POLLUX study. Blood cancer journal. 2018 May				
	1;8(4):1-9.[27]				
Clinicaltrials.gov	NCT02076009				
registry information					
Study sites	Multicenter				
Study enrollment	Randomized between June 2014 and July 2015, and				
period	the clinical cutoff date for this analysis was 7 March				
	2017.				
Target population	Patients had documented multiple myeloma and				
	measurable disease at screening according to serum				
	or urinary M-protein levels and they had received				
	and had a response to one or more lines of previous				
	therapy.				
Eligibility criteria	Eligible patients had progressive disease according				
	to International Myeloma Working Group (IMWG)				
	criteria during or after their last regimen and had				
	received and responded to ≥ 1 line of prior therapy				
Key exclusion	Key exclusion criteria were lenalidomide-				
criteria	refractory disease.				
	The discontinuation of previous lenalidomide				
	treatment owing to adverse events.				
	• A neutrophil count of 1.0×109 or less per liter.				
	A hemoglobin level of 7.5 g or less per				
	deciliter.				
	• A platelet count of less than 75×109 per liter.				
	An alanine aminotransferase or aspartate				
	aminotransferase level of 2.5 or more times				

	the upper limit of the normal range.				
	An alkaline phosphatase level of 2.5 or more				
	times the upper limit of the normal range.				
	A bilirubin level of 1.5 or more times the				
	upper limit of the normal range, and a				
	creatinine clearance of less than 30 ml per				
	minute.				
Details of	Daratumumab plus lenalidomide and				
interventional	dexamethasone (DRd): n=286				
method	 East Asian patients: n=52 				
	Dosing: Lenalidomide: 25 mg orally on Days				
	1-21 of each 28-day cycle; dexamethasone:				
	40 mg orally weekly) with daratumumab (16				
	mg/kg intravenously weekly for 8 weeks,				
	every 2 weeks for 16 weeks, and then every 4				
	weeks.				
Details of	Lenalidomide and dexamethasone (Rd):				
comparators	n=283				
	 East Asian patients: n=44 				
	 Japanese patients: n=15 				
	Dosing: lenalidomide: 25 mg orally on Days 1-21 of				
	each 28-day cycle; dexamethasone: 40 mg orally				
	weekly) without daratumumab (16 mg/kg				
	intravenously weekly for 8 weeks, every 2 weeks for				
	16 weeks, and then every 4 weeks.				
Study design	Randomized, phase 3 trial				
Blinding method	Open label				
Primary endpoint	Progression-free survival				
Key secondary	Overall response (partial response or better)				
endpoints	Proportion of patients with very good partial				
	response or better.				
	Proportion of patients with complete response				
	or better				
	Median duration of response				

	Time to response				
	Overall survival				
	Health-related Quality of Life				
Statistical methods	Progression-free survival was compared				
	between treatment groups based on a				
	stratified log-rank test.				
	Hazard ratios and 95% confidence intervals				
	were estimated using a Cox regression model				
	with treatment as the sole explanatory				
	variable.				
	The Kaplan-Meier method was used to				
	estimate the distributions.				
	Stratified Cochran-Mantel-Haenszel tests were				
	used to test treatment differences in overall				
	response rate and rates of very good partial				
	response or better and complete response or				
	better.				
	DRd group East-Asian patients: n=52				
Sample size	DRd group East-Asian patients: n=52				
Sample size	 Japanese patients: n=21 				
Sample size	 Japanese patients: n=21 Rd group East-Asian patients: n=44 				
Sample size	 Japanese patients: n=52 Japanese patients: n=21 Rd group East-Asian patients: n=44 Japanese patients: n=15 				
Sample size Follow-up period	 Japanese patients: n=52 Japanese patients: n=21 Rd group East-Asian patients: n=44 Japanese patients: n=15 Median (range) 				
Sample size Follow-up period	 DRd group East-Asian patients: n=52 Japanese patients: n=21 Rd group East-Asian patients: n=44 Japanese patients: n=15 Median (range) East Asian patients: 24.7 (0.7–30.5) months 				
Sample size Follow-up period	 DRd group East-Asian patients: n=52 Japanese patients: n=21 Rd group East-Asian patients: n=44 Japanese patients: n=15 Median (range) East Asian patients: 24.7 (0.7–30.5) months Japanese patients: 21.4 (4.4–24.1) months 				
Sample size Follow-up period Main background	 DRd group East-Asian patients: n=52 Japanese patients: n=21 Rd group East-Asian patients: n=44 Japanese patients: n=15 Median (range) East Asian patients: 24.7 (0.7–30.5) months Japanese patients: 21.4 (4.4–24.1) months East Asian patients (DRd vs Rd group): 				
Sample size Follow-up period Main background factors of subjects	 DRd group East-Asian patients: n=52 Japanese patients: n=21 Rd group East-Asian patients: n=44 Japanese patients: n=15 Median (range) East Asian patients: 24.7 (0.7–30.5) months Japanese patients: 21.4 (4.4–24.1) months East Asian patients (DRd vs Rd group): Male, %: 50 vs 61.4 				
Sample size Follow-up period Main background factors of subjects	 DRd group East-Asian patients: n=52 Japanese patients: n=21 Rd group East-Asian patients: n=44 Japanese patients: n=15 Median (range) East Asian patients: 24.7 (0.7–30.5) months Japanese patients: 21.4 (4.4–24.1) months East Asian patients (DRd vs Rd group): Male, %: 50 vs 61.4 Median age (range), years: 64 (34–80) vs 65 				
Sample size Follow-up period Main background factors of subjects	 DRd group East-Asian patients: n=52 Japanese patients: n=21 Rd group East-Asian patients: n=44 Japanese patients: n=15 Median (range) East Asian patients: 24.7 (0.7–30.5) months Japanese patients: 21.4 (4.4–24.1) months East Asian patients (DRd vs Rd group): Male, %: 50 vs 61.4 Median age (range), years: 64 (34–80) vs 65 (44–85) 				
Sample size Follow-up period Main background factors of subjects	 DRd group East-Asian patients: n=52 Japanese patients: n=21 Rd group East-Asian patients: n=44 Japanese patients: n=15 Median (range) East Asian patients: 24.7 (0.7–30.5) months Japanese patients: 21.4 (4.4–24.1) months East Asian patients (DRd vs Rd group): Male, %: 50 vs 61.4 Median age (range), years: 64 (34–80) vs 65 (44–85) Cytogenetic risk, n (%) 				
Sample size Follow-up period Main background factors of subjects	 DRd group East-Asian patients: n=52 Japanese patients: n=21 Rd group East-Asian patients: n=44 Japanese patients: n=15 Median (range) East Asian patients: 24.7 (0.7–30.5) months Japanese patients: 21.4 (4.4–24.1) months East Asian patients (DRd vs Rd group): Male, %: 50 vs 61.4 Median age (range), years: 64 (34–80) vs 65 (44–85) Cytogenetic risk, n (%) Standard risk: 46 (92.0) vs 35 (83.3) 				
Sample size Follow-up period Main background factors of subjects	 DRd group East-Asian patients: n=52 Japanese patients: n=21 Rd group East-Asian patients: n=44 Japanese patients: n=15 Median (range) East Asian patients: 24.7 (0.7–30.5) months Japanese patients: 21.4 (4.4–24.1) months East Asian patients (DRd vs Rd group): Male, %: 50 vs 61.4 Median age (range), years: 64 (34–80) vs 65 (44–85) Cytogenetic risk, n (%) Standard risk: 46 (92.0) vs 35 (83.3) High risk: 4 (8.0) vs 7 (16.7) 				
Sample size Follow-up period Main background factors of subjects	 DRd group East-Asian patients: n=52 Japanese patients: n=21 Rd group East-Asian patients: n=44 Japanese patients: n=15 Median (range) East Asian patients: 24.7 (0.7–30.5) months Japanese patients: 21.4 (4.4–24.1) months East Asian patients (DRd vs Rd group): Male, %: 50 vs 61.4 Median age (range), years: 64 (34–80) vs 65 (44–85) Cytogenetic risk, n (%) Standard risk: 46 (92.0) vs 35 (83.3) High risk: 4 (8.0) vs 7 (16.7) Japanese patients (DRd vs Rd group): 				
Sample size Follow-up period Main background factors of subjects	 Japanese patients: n=52 Japanese patients: n=21 Rd group East-Asian patients: n=44 Japanese patients: n=15 Median (range) East Asian patients: 24.7 (0.7–30.5) months Japanese patients: 21.4 (4.4–24.1) months East Asian patients (DRd vs Rd group): Male, %: 50 vs 61.4 Median age (range), years: 64 (34–80) vs 65 (44–85) Cytogenetic risk, n (%) Standard risk: 46 (92.0) vs 35 (83.3) High risk: 4 (8.0) vs 7 (16.7) Japanese patients (DRd vs Rd group): Male, %: 52.4 vs 60 				

	1				
	(50–81)				
	Cytogenetic risk, n (%)				
	 Standard risk: 17 (85.0) vs 10 (66.7) 				
	 High risk: 3 (15.0) vs 5 (33.3) 				
Efficacy in East	PFS				
Asian population	Median PFS was NR vs. 13.8 months for DRd				
	vs Rd, respectively (HR, 0.42; 95% CI, 0.23-				
	0.76).				
	The 24-month PFS rate for DRd vs. Rd was				
	65.6% (95% CI, 50.5–77.0) vs. 32.2% (95%				
	CI, 18.3–46.9).				
	ORR				
	 Overall response rate was 90.2% (n=46/51) 				
	patients in the DRd and 72.1% (n=31/43) in				
	Rd.				
	 Stringent complete responses (sCRs): 17 				
	(33.3%) and 5 (11.6%) of patients receiving				
	DRd and Rd, respectively.				
	• CRs: 10 (19.6%) and 4 (9.3%) of patients				
	receiving DRd and Rd.				
	 Very good partial responses (VGPRs): 11 				
	(21.6%) and 8 (18.6%) of patients receiving				
	DRd and Rd.				
	 Partial responses (PRs): 8 (15.7%) vs. 14 				
	(32.6%) of patients receiving DRd and Rd.				
Safety in East Asian	 Higher rates of neutropenia, diarrhea, 				
population	nasopharyngitis, and pyrexia were observed				
	in the DRd group compared with those in the				
	Rd group, consistent with the overall				
	population.				
	• Serious TEAEs were observed in 26 (51.0%)				
	patients in the DRd group vs. 19 (43.2%)				
	patients in the Rd group, most common				
	being pneumonia.				

	IRRs			
	 In daratumumab treated patients, IRR 			
	occurred in 25 (49.0%) patients.			
	• Grade 3 IRRs occurred in 6 (11.8%) patients.			
	 Most common IRR was dyspnea, which 			
	occurred in 5 (9.8%) patients.			
Efficacy in	PFS			
Japanese-only	 Median PFS was NR vs. 17.6months for DRd 			
population	vs Rd, respectively (HR, 0.32; 95% CI, 0.11-			
	0.96).			
	ORR			
	 Overall response rate was 90% (n=18/20) 			
	patients in the DRd and 60% (n=9/15) in Rd.			
	 Stringent complete responses (sCRs): 9 			
	(45.0%) and 1 (6.7%) of patients receiving			
	DRd and Rd, respectively.			
	• CRs: 1 (5.0%) and 0 (0.0%) of patients			
	receiving DRd and Rd.			
	 Very good partial responses (VGPRs): 5 			
	(25.0%) and 4 (26.7%) of patients receiving			
	DRd and Rd.			
	• Partial responses (PRs): 3 (15.0%) and 4			
	(26.7%) of patients receiving DRd and Rd.			
Safety in Japanese-	 Higher rates of neutropenia, diarrhea, 			
only population	nasopharyngitis, and pyrexia were observed			
	in the DRd group compared to Rd group.			
	 Serious TEAEs were observed in 10 (50.0%) 			
	patients in the DRd group vs. 4 (26.7%)			
	patients in the Rd group, most common			
	being pneumonia.			
	IRRs			
	 In daratumumab treated patients, IRR 			
	occurred in 7 (35.0%) patients.			
	Grade 3 IRRs occurred in 1 (5.0%) patient.			

	 Most common IRR was dyspnea, which 					
	occurred in 2 (10.0%) patients.					
Conclusion	The addition of daratumumab to Rd led to better					
	PFS as compared with Rd alone in both East Asian					
	patients and Japanese patients from POLLUX,					
	consistent with findings in the global POLLUX					
	population.					

Appendix O: One-Way Sensitivity Analysis

• Table O1 Parameter Ranges and Analytical Results (RRMM DVd Model)

	Parameter Ranges		Rationale	Scope of ICER	
Parameter	Lower Limit	Upper Limit		Lower Limit	Upper Limit
Age			Assuming 10% SE and normal distribution		
Weight			Assuming 10% SE and normal distribution		
Height			Assuming 10% SE and normal distribution		
Discount Rate (Costs)	0%	4%	Per HTA guideline		
Discount Rate (Health)	0%	4%	Per HTA guideline		
Proportion receiving subsequent treatment after			Assuming 10% SE and normal distribution		

	Parameter Ranges		Rationale	Scope of ICER	
Parameter	Lower Limit	Upper Limit		Lower Limit	Upper Limit
DVd (SC)					
Proportion receiving subsequent treatment after Vd			Assuming 10% SE and normal distribution		
Proportion Hospitalized Dara (SC)			Assuming 10% SE and normal distribution		
Length of Stay Dara (SC)			Assuming 10% SE and normal distribution		
Hospital Fee (Days 1-4)			Assuming 10% SE and Gamma distribution		
Hospital Fee (Days 5-14)			Assuming 10% SE and Gamma distribution		
Hospital Fee (Days 15-21)			Assuming 10% SE and Gamma distribution		

Parameter Ranges		er Ranges	Rationale	Scop	Scope of ICER	
Parameter	Lower Limit	Upper Limit		Lower Limit	Upper Limit	
Admin Cost:			Assuming 10% SE and			
Dara (SC)			Gamma distribution			
Admin Cost:			Assuming 10% SE and			
Other IV			Gamma distribution			
Admin Cost:			Assuming 10% SE and			
Oral			Gamma distribution			
% IV for			Assuming 10% SE and			
bortezomib			normal distribution			
Subsequent			Accuming 10% SE and			
Tx: Weekly			Assuming 10% SE and			
Drug Cost			Gamma distribution			
Subsequent						
Tx: Weekly			Assuming 10% SE and			
Administration			Gamma distribution			
Cost						
Weekly MRU			Assuming 10% SE and			
Cost: PFS			Gamma distribution			
Weekly MRU			Assuming 10% SE and			
Cost: PPS			Gamma distribution			

	Parameter Ranges		Rationale	Scope of ICER	
Parameter	Lower Limit	Upper Limit		Lower Limit	Upper Limit
End of Life Cost (One-			Assuming 10% SE and		
Time)			Gamma distribution		
Utility: PFS			Assuming 10% SE and lognormal distribution		
Utility: PPS			Assuming 10% SE and lognormal distribution		
Utility			Assuming 10% SE and		
Decrement:			lognormal distribution		
DVd (SC)					
Utility			Assuming 10% SE and		
Decrement: Vd			lognormal distribution		

• Table O2. Parameter Ranges and Analytical Results (RRMM DRd Model)

	Parameter Ranges		Rationale	Scope of ICER	
Parameter	Lower	Upper		Lower	Uppor Limit
	Limit	Limit		Limit	
Age			Assuming 10% SE and		
Age			normal distribution		

Parameter Ran		Parameter Ranges Rationale		Scope of ICER		
Parameter	Lower Limit	Upper Limit		Lower Limit	Upper Limit	
Weight			Assuming 10% SE and normal distribution			
Height			Assuming 10% SE and normal distribution			
Discount Rate (Costs)	0%	4%	Per HTA guideline			
Discount Rate (Health)	0%	4%	Per HTA guideline			
Proportion receiving subsequent treatment after DRd (SC)			Assuming 10% SE and normal distribution			
Proportion receiving subsequent			Assuming 10% SE and normal distribution			

	Parameter Ranges		Rationale	Scope of ICER	
Parameter	Lower Limit	Upper Limit		Lower Limit	Upper Limit
treatment after					
Rd					
Proportion Hospitalized Dara (SC)			Assuming 10% SE and normal distribution		
Length of Stay Dara (SC)			Assuming 10% SE and normal distribution		
Hospital Fee			Assuming 10% SE and		
(Days 1-4)			Gamma distribution		
Hospital Fee			Assuming 10% SE and		
(Days 5-14)			Gamma distribution		
Hospital Fee			Assuming 10% SE and		
(Days 15-21)			Gamma distribution		
Admin Cost:			Assuming 10% SE and		
Dara (SC)			Gamma distribution		
Admin Cost:			Assuming 10% SE and		
Oral			Gamma distribution		
Subsequent			Assuming 10% SE and		
Tx: Weekly			Gamma distribution		

	Paramete	er Ranges	Rationale		Scope	of ICER
Parameter	Lower Limit	Upper Limit		Lowe Limi	er t	Upper Limit
Drug Cost						
Subsequent						
Tx: Weekly			Assuming 10% SE and			
Administration			Gamma distribution			
Cost						
Weekly MRU			Assuming 10% SE and			
Cost: PFS			Gamma distribution			
Weekly MRU			Assuming 10% SE and			
Cost: PPS			Gamma distribution			
End of Life			Accuming 100/ SE and			
Cost (One-			Assuming 10% SE and			
Time)			Gamma distribution			
			Assuming 10% SE and			
Utility: PFS			lognormal distribution			
			Assuming 10% SE and			
			lognormal distribution			
Utility			Accuming 100/ CE and			
Decrement:			Assuming 10% SE and			
DRd (SC)			lognormal distribution			

	Parameter Ranges		Rationale	Scope of ICER	
Parameter	Lower	Upper		Lower	Uppor Limit
	Limit	Limit		Limit	
Utility			Assuming 10% SE and		
Decrement: Rd			lognormal distribution		