

C2H Evaluation Report

## C2H1902

# Tisagenlecleucel/DLBCL (Kymriah<sup>®</sup>)

March 2021

Center for Outcomes Research and Economic Evaluation for Health

National Institute of Public Health

JAPAN



## Cost-effectiveness evaluation of tisagenlecleucel (Kymria) by the academic group [Version 1.1]

Relapsed or refractory CD19-positive diffuse large B-cell lymphoma (DLBCL)

[November 11, 2020]

## [Table of contents]

| list of abbreviations4                                                       |
|------------------------------------------------------------------------------|
| 0. Framework of analysis6                                                    |
| 1. Results by foreign health technology assessment agencys7                  |
| [Results of review on documents submitted by the manufacturer in Chapter 1]  |
|                                                                              |
| 2. Systematic review (SR)                                                    |
| 2.1 Clinical questions set by academic analysis                              |
| 2.2 Study design of SR26                                                     |
| 2.2.1 Inclusion and exclusion criteria for clinical study                    |
| 2.2.2 Database used27                                                        |
| 2.2.3 Search formula used28                                                  |
| 2.2.4 Other                                                                  |
| 2.3 Search results                                                           |
| [Results of review on documents submitted by the manufacturer in Chapter 2]  |
|                                                                              |
| 2.4 Evaluation of the presence or absence of additional benefit              |
| 3. Analysis by the academic group of cost-effectiveness                      |
| 3.1 Presence or absence of the site requiring analysis by the academic group |
| based on review results                                                      |
| 3.2 Summary of analysis by the academic group required                       |
| 3.2.1 Analytical methods, parameters, etc. that need to be reconsidered (for |
| major [significant impact on results])39                                     |
| 3.2.2 Analytical methods, parameters, etc. that need to be reconsidered      |
| (other than 3.2.1)                                                           |
| 3.3 Analysis by the academic group policy for major points (points having a  |
| large impact on results)40                                                   |
| 3.3.1 Mean age in the target patient population [only in the population aged |
| <70 years]40                                                                 |
| [Details of academic analysis (revision)]41                                  |
| 3.3.2 How to extrapolate survival time curves (PFS and OS) [only in the      |
| population aged <70 years]43                                                 |
| [Details of academic analysis (revision)]44                                  |

| 3.3.3 Data source of efficacy parameters and method of extrapolation of        |
|--------------------------------------------------------------------------------|
| survival time curves (PFS and OS) for tisagenlecleucel [only in the population |
| aged ≥70 years]50                                                              |
| [Details of academic analysis (revision)]51                                    |
| 3.3.4 QOL scores for PFS56                                                     |
| [Details of academic analysis (revision)]56                                    |
| 3.4 Analysis by the academic group policies for the points that need to be     |
| examined other than 3.358                                                      |
| 3.4.1 Details of cost parameters (National Health Insurance Drug Price         |
| Standard of salvage chemotherapy)58                                            |
| [Details of academic analysis (revision)]58                                    |
| 3.4.2 Details of cost parameters (salvage chemotherapy price reference).61     |
| [Details of academic analysis (revision)]61                                    |
| 3.4.3 About the state cost of PFS (Excel)64                                    |
|                                                                                |
| [Details of academic analysis (revision)]64                                    |
| [Details of academic analysis (revision)]64<br>4. Analytical results65         |
| [Details of academic analysis (revision)]                                      |

## list of abbreviations

| Abbreviations                                                                         | Formal description                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| AIC                                                                                   | Akaike's Information Criterion                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| ALL                                                                                   | Acute Lymphoblastic Leukemia                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| ASCT                                                                                  | Autologous hematopoietic Stem Cell Transplant                                                                                                                                                                                                                                                                                                                                                                                              |  |
| ASMR                                                                                  | Amelioration du Service Médical Rendu                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| B-ALL                                                                                 | B-cell Acute Lymphoblastic Leukemia                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| CAD                                                                                   | Canadian dollar                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| CADTH                                                                                 | Canadian Agency for Drugs and Technologies in Health                                                                                                                                                                                                                                                                                                                                                                                       |  |
| CAR                                                                                   | Chimeric Antigen Receptor                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| C2H                                                                                   | Center for Outcomes Research and Economic Evaluation for Health                                                                                                                                                                                                                                                                                                                                                                            |  |
| CI                                                                                    | Confidence Interval                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| DLBCL                                                                                 | Diffuse Large B-Cell Lymphoma                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| EQ-5D                                                                                 | EuroQol 5 Dimension                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| EQ-5D-5L                                                                              | EuroQol 5 Dimension 5 Level                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| HAS                                                                                   | Haute Autorité de Santé                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| HR                                                                                    | Hazard Ratio                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| HRQL                                                                                  | Health-Related Ouality of Life                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| HSCT                                                                                  | Hematopoietic Stem Cell Transplantation                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| HSCT<br>ICER                                                                          | Hematopoietic Stem Cell Transplantation<br>Incremental Cost-Effectiveness Ratio                                                                                                                                                                                                                                                                                                                                                            |  |
| HSCT<br>ICER<br>IQWiG                                                                 | Hematopoietic Stem Cell Transplantation<br>Incremental Cost-Effectiveness Ratio<br>Instituts für Qualität und Wirtschaftlichkeit im Gesundheitswesen                                                                                                                                                                                                                                                                                       |  |
| HSCT<br>ICER<br>IQWiG<br>MAIC                                                         | Hematopoietic Stem Cell Transplantation<br>Incremental Cost-Effectiveness Ratio<br>Instituts für Qualität und Wirtschaftlichkeit im Gesundheitswesen<br>Matched Adjusted Indirect Comparison                                                                                                                                                                                                                                               |  |
| HSCT<br>ICER<br>IQWiG<br>MAIC<br>MSAC                                                 | Hematopoietic Stem Cell Transplantation<br>Incremental Cost-Effectiveness Ratio<br>Instituts für Qualität und Wirtschaftlichkeit im Gesundheitswesen<br>Matched Adjusted Indirect Comparison<br>Medical Services Advisory Committee                                                                                                                                                                                                        |  |
| HSCT<br>ICER<br>IQWiG<br>MAIC<br>MSAC<br>NA                                           | Hematopoietic Stem Cell Transplantation<br>Incremental Cost-Effectiveness Ratio<br>Instituts für Qualität und Wirtschaftlichkeit im Gesundheitswesen<br>Matched Adjusted Indirect Comparison<br>Medical Services Advisory Committee<br>Not Applicable                                                                                                                                                                                      |  |
| HSCT<br>ICER<br>IQWiG<br>MAIC<br>MSAC<br>NA<br>NICE                                   | Hematopoietic Stem Cell Transplantation<br>Incremental Cost-Effectiveness Ratio<br>Instituts für Qualität und Wirtschaftlichkeit im Gesundheitswesen<br>Matched Adjusted Indirect Comparison<br>Medical Services Advisory Committee<br>Not Applicable<br>National Institute for Health and Care Excellence                                                                                                                                 |  |
| HSCT<br>ICER<br>IQWiG<br>MAIC<br>MSAC<br>NA<br>NICE<br>OS                             | Hematopoietic Stem Cell Transplantation<br>Incremental Cost-Effectiveness Ratio<br>Instituts für Qualität und Wirtschaftlichkeit im Gesundheitswesen<br>Matched Adjusted Indirect Comparison<br>Medical Services Advisory Committee<br>Not Applicable<br>National Institute for Health and Care Excellence<br>Overall survival                                                                                                             |  |
| HSCT<br>ICER<br>IQWIG<br>MAIC<br>MSAC<br>NA<br>NICE<br>OS<br>PAS                      | Hematopoietic Stem Cell Transplantation<br>Incremental Cost-Effectiveness Ratio<br>Instituts für Qualität und Wirtschaftlichkeit im Gesundheitswesen<br>Matched Adjusted Indirect Comparison<br>Medical Services Advisory Committee<br>Not Applicable<br>National Institute for Health and Care Excellence<br>Overall survival<br>Patient Access Schemes                                                                                   |  |
| HSCT<br>ICER<br>IQWIG<br>MAIC<br>MSAC<br>NA<br>NICE<br>OS<br>PAS<br>PD                | Hematopoietic Stem Cell Transplantation<br>Incremental Cost-Effectiveness Ratio<br>Instituts für Qualität und Wirtschaftlichkeit im Gesundheitswesen<br>Matched Adjusted Indirect Comparison<br>Medical Services Advisory Committee<br>Not Applicable<br>National Institute for Health and Care Excellence<br>Overall survival<br>Patient Access Schemes<br>Progressive Disease                                                            |  |
| HSCT<br>ICER<br>IQWIG<br>MAIC<br>MSAC<br>NA<br>NICE<br>OS<br>PAS<br>PD<br>PFS         | Hematopoietic Stem Cell Transplantation<br>Incremental Cost-Effectiveness Ratio<br>Instituts für Qualität und Wirtschaftlichkeit im Gesundheitswesen<br>Matched Adjusted Indirect Comparison<br>Medical Services Advisory Committee<br>Not Applicable<br>National Institute for Health and Care Excellence<br>Overall survival<br>Patient Access Schemes<br>Progressive Disease<br>Progression Free Survival                               |  |
| HSCT<br>ICER<br>IQWIG<br>MAIC<br>MSAC<br>NA<br>NICE<br>OS<br>PAS<br>PD<br>PFS<br>QALY | Hematopoietic Stem Cell Transplantation<br>Incremental Cost-Effectiveness Ratio<br>Instituts für Qualität und Wirtschaftlichkeit im Gesundheitswesen<br>Matched Adjusted Indirect Comparison<br>Medical Services Advisory Committee<br>Not Applicable<br>National Institute for Health and Care Excellence<br>Overall survival<br>Patient Access Schemes<br>Progressive Disease<br>Progression Free Survival<br>Quality-Adjusted Life Year |  |

| R-CHOP  | Rituximab with Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone |  |  |
|---------|---------------------------------------------------------------------------|--|--|
| R-DHAP  | Rituximab with Dexamethasone, Cisplatin, and Cytarabine                   |  |  |
| R-GEMOX | Rituximab with Gemcitabine and Oxaliplatin                                |  |  |
| R-ICE   | Rituximab with Ifosfamide, Carboplatin, and Etoposide                     |  |  |
| RCT     | Randomized Controlled Trial                                               |  |  |
| RL      | Relapse                                                                   |  |  |
| SCT     | Stem Cell Transplant                                                      |  |  |
| SMC     | Scottish Medicines Agency                                                 |  |  |
| SMR     | Service Médical Rendu                                                     |  |  |

## 0. Framework of analysis

#### Table 0-1 The framework of analysis

|                    | Patients with relapsed or refractory CD19-positive diffuse  |
|--------------------|-------------------------------------------------------------|
|                    | large B-cell lymphoma (DLBCL) who are divided into the      |
| Population         | following age groups:                                       |
|                    | (a) <70 years                                               |
|                    | (b) ≥70 years                                               |
|                    | Population (a): Salvage chemotherapy +/- allogeneic         |
| comparator         | hematopoietic stem cell transplantation (HSCT)              |
|                    | Population (b): Salvage chemotherapy                        |
| Descen for         | Salvage chemotherapy +/- allogeneic HSCT is the standard    |
| Reason for         | and effective for these DLBCL patients. For the population  |
| selection of       | (b), allogeneic HSCT is generally not performed considering |
| comparator         | their age. Therefore comparators are determined as above.   |
| Other perspective  | Vac(Dataile: Analysis including productivity loss           |
| in addition to     | (manufacturer analysis including productivity loss          |
| public healthcare  |                                                             |
| payer              |                                                             |
| Outcome unit and   |                                                             |
| the reason if QALY | Not applicable                                              |
| is not used.       |                                                             |

## 1. Results by health technology assessment agency

1

#### Table 1-1 List of assessments (Including additional benefit)

| Country | Organizati | Results                                                        |                                               |  |
|---------|------------|----------------------------------------------------------------|-----------------------------------------------|--|
|         | on         | Manufacturer                                                   | Academic analysis                             |  |
| UK      | NICE       | ·Recommended/Not                                               | Recommended/Not recommended/Conditionally     |  |
|         |            | recommended/Conditionally recommended                          | recommended (Specify: Cancer Drugs            |  |
|         |            | (Specify: Cancer Drugs Fund)/Other ( )                         | Fund)/Other(  )                               |  |
|         |            | Status: Final Guidance/Draft/Other                             | ·Status: Final Guidance/Draft/Other           |  |
|         |            | ( )                                                            | ( )                                           |  |
|         | SMC        | ·Recommended/Not                                               | Recommended/Not recommended/Conditionally     |  |
|         |            | recommended/Conditionally recommended                          | recommended (Specify: Patient Access          |  |
|         |            | (Specify: )/Other ( )                                          | Schemes)/Other(  )                            |  |
| France  | HAS        | SMR: Important     SMR: Important                              |                                               |  |
|         |            | · ASMR: I/II/III/IV/V                                          | · ASMR: I/II/III/IV/V                         |  |
|         |            | Efficiency assessment: Yes (major ICER                         | Efficiency assessment: Yes (major ICER value: |  |
|         |            | value: )/Under assessment/Not performed                        | 294,381 €/QALY over 10 years)/Under           |  |
|         |            |                                                                | assessment/Not performed                      |  |
| Germany | IQWiG      | <ul> <li>Major/Considerable/Minor/Unquantifiable/No</li> </ul> | · Major/Considerable/Minor/Unquantifiable/No  |  |
|         |            | additional benefit                                             | additional benefit                            |  |

| Canada    | CADTH | ·Recommended/Not                                           | ·Recommended/Not recommended/Conditionally |
|-----------|-------|------------------------------------------------------------|--------------------------------------------|
|           |       | recommended/Conditionally recommended                      | recommended (Specify: reduction in price)/ |
|           |       | (Specify: On the condition that there is a                 | /Other()                                   |
|           |       | substantial reduction in price)/Other ( )                  |                                            |
| Australia | MSAC  | Recommended/Not     ·Recommended/Not recommended/Condition |                                            |
|           |       | recommended/Conditionally recommended                      | recommended (Specify: risk sharing         |
|           |       | (Specify: )/Other ( )                                      | arrangement)/ Other ( )                    |

| Country   | Organization | Implementation                          |                                         |  |
|-----------|--------------|-----------------------------------------|-----------------------------------------|--|
|           |              | Manufacturer                            | Academic analysis                       |  |
| UK        | NICE         | Yes/ No/ Under assessment (with/without | Yes/ No/ Under assessment (with/without |  |
|           |              | draft)/ Unknown                         | draft)/ Unknown                         |  |
|           | SMC          | Yes/ No/ Under assessment/ Unknown      | Yes/ No/ Under assessment/ Unknown      |  |
| France    | HAS          | Yes/ No/ Under assessment/ Unknown      | Yes/ No/ Under assessment/ Unknown      |  |
| Canada    | CADTH        | Yes/ No/ Under assessment/ Unknown      | Yes/ No/ Under assessment/ Unknown      |  |
| Australia | MSAC         | Yes/ No/ Under assessment/ Unknown      | Yes/ No/ Under assessment/ Unknown      |  |

 Table 1-2 Implementation of cost-effectiveness analysis in each country

#### Table 1-3 Details of cost-effectiveness analysis in each country

#### Table 1-3-1 Details of cost-effectiveness analysis in UK (NICE)

| Country                        | UK                                                                |                     |
|--------------------------------|-------------------------------------------------------------------|---------------------|
|                                | Manufacturer                                                      | Academic analysis   |
| Organization                   | NICE                                                              |                     |
| URLs                           | https://www.nice.org.uk/guidance/ta567                            | Same as in the left |
| Target technology              | Tisagenlecleucel                                                  | Same as in the left |
| Results                        | Conditional recommendation                                        | Same as in the left |
| If conditionally recommended,  | Cancer Drugs Fund                                                 | Same as in the left |
| details of the condition       |                                                                   |                     |
| Disease                        | Adult patients with relapsed or refractory diffuse large B-       | Same as in the left |
|                                | cell lymphoma (DLBCL) after two or more lines of                  |                     |
|                                | systemic therapy                                                  |                     |
| Dosage                         | Treatment with tisagenlecleucel comprises a single-dose           | Same as in the left |
|                                | intravenous infusion. It is intended for autologous use           |                     |
|                                | only and the dosage for adults with diffuse large B-cell          |                     |
|                                | lymphoma is 0.6 to $6.0 \times 10^8$ CAR-positive viable T cells. |                     |
| Comparator                     | Salvage chemotherapy excluding pixantrone                         | Same as in the left |
| Incremental cost-effectiveness | Company's base case: (ICER): £46,325                              | Same as in the left |
| ratio (ICER)                   | The committee: ranged between £42,991 and £55,403                 |                     |

| per QALY gained |  |
|-----------------|--|
|-----------------|--|

#### Table 1-3-2 Details of cost-effectiveness analysis in UK (SMC)

| Country                        | UK                                                          |                     |
|--------------------------------|-------------------------------------------------------------|---------------------|
|                                | Manufacturer                                                | Academic analysis   |
| Organization                   | SMC                                                         |                     |
| URLs                           | https://www.scottishmedicines.org.uk/medicines-             | Same as in the left |
|                                | advice/tisagenlecleucel-kymriah-resubmission-smc2200/       |                     |
| Target technology              | Tisagenlecleucel                                            | Same as in the left |
| Results                        | Conditional recommendation                                  | Same as in the left |
| If conditionally recommended,  | Patient Access Scheme                                       | Same as in the left |
| details of the condition       |                                                             |                     |
| Disease                        | Adult patients with relapsed or refractory diffuse large B- | Same as in the left |
|                                | cell lymphoma (DLBCL) after two or more lines of            |                     |
|                                | systemic therapy                                            |                     |
| Dosage                         | Tisagenlecleucel is intended for autologous use only.       | Same as in the left |
|                                | Tisagenlecleucel is to be administered via intravenous      |                     |
|                                | infusion.                                                   |                     |
|                                | The recommended single dose of tisagenlecleucel for         |                     |
|                                | DLBCL patients is 0.6 to 6.0 x $10^8$ chimeric antigen      |                     |
|                                | receptor (CAR)-positive viable T cells (non-weight based).  |                     |
| Comparator                     | Salvage chemotherapy                                        | Same as in the left |
| Incremental cost-effectiveness | Base-case results – with PAS                                | Same as in the left |

| ratio (ICER) | Vs [R-]Gem-Ox ICER: £44,330 |  |
|--------------|-----------------------------|--|
|              | Vs [R-]GDP ICER: £44,151    |  |

#### Table 1-3-3 Details of cost-effectiveness analysis in France (HAS)

| Country                       | France                                                                  |                        |
|-------------------------------|-------------------------------------------------------------------------|------------------------|
|                               | Manufacturer                                                            | Academic analysis      |
| Organization                  | HAS                                                                     |                        |
| URLs                          | https://www.has-sante.fr/jcms/pprd_2982962/en/kymriah                   | Same as in the left    |
| Target technology             | Tisagenlecleucel                                                        | Same as in the left    |
| Results                       | SMR: Important / ASMR: IV                                               | Same as in the left    |
| If conditionally recommended, | NA                                                                      | Same as in the left    |
| details of the condition      |                                                                         |                        |
| Disease                       | Adult patients with relapsed or refractory diffuse large B-             | Same as in the left    |
|                               | cell lymphoma (DLBCL) after two or more lines of systemic               |                        |
|                               | therapy                                                                 |                        |
| Dosage                        | Treatment with tisagenlecleucel comprises a single-dose                 | Same as in the left    |
|                               | intravenous infusion of tisagenlecleucel. It is intended for            |                        |
|                               | autologous use only and the dosage for adults with diffuse              |                        |
|                               | large B-cell lymphoma is 0.6 to 6.0x10 <sup>8</sup> CAR-positive viable |                        |
|                               | T cells.                                                                |                        |
| Comparator                    | Salvage chemotherapy, Yescarta, palliative care, and                    | Salvage chemotherapies |
|                               | alloSCT if patient eligible                                             | · R-DHAP               |
|                               |                                                                         | · R-ICE                |
|                               |                                                                         | · R-GEMOX              |

| Incremental cost-effectiveness | NA | 294 381 €/QALY over 10 years |
|--------------------------------|----|------------------------------|
| ratio (ICER)                   |    |                              |

#### Table 1-3-4 Details of cost-effectiveness analysis in Germany (IQWIG)

| Country                       | Germany                                                                 |                     |
|-------------------------------|-------------------------------------------------------------------------|---------------------|
|                               | Manufacturer                                                            | Academic analysis   |
| Organization                  | IQWIG                                                                   |                     |
| URLs                          | https://www.iqwig.de/en/projects-results/projects/health-               | Same as in the left |
|                               | economic/g18-10-tisagenlecleucel-diffuse-large-b-cell-                  |                     |
|                               | lymphoma-assessment-according-to-35a-para-1-sentence-                   |                     |
|                               | 11-social-code-book-v.10620.html                                        |                     |
| Target technology             | Tisagenlecleucel                                                        | Same as in the left |
| Results                       | Unquantifiable                                                          | Same as in the left |
| If conditionally recommended, | NA                                                                      | Same as in the left |
| details of the condition      |                                                                         |                     |
| Disease                       | Adult patients with relapsed or refractory diffuse large B-             | Same as in the left |
|                               | cell lymphoma (DLBCL) after two or more lines of systemic               |                     |
|                               | therapy                                                                 |                     |
| Dosage                        | Treatment with tisagenlecleucel comprises a single-dose                 | Same as in the left |
|                               | intravenous infusion of tisagenlecleucel. It is intended for            |                     |
|                               | autologous use only and the dosage for adults with diffuse              |                     |
|                               | large B-cell lymphoma is 0.6 to 6.0x10 <sup>8</sup> CAR-positive viable |                     |
|                               | T cells.                                                                |                     |
| Comparator                    | None (reason:orphan designation)                                        | Same as in the left |

| Incremental cost-effectiveness | NA | Same as in the left |
|--------------------------------|----|---------------------|
| ratio (ICER)                   |    |                     |

#### Table 1-3-5 Details of cost-effectiveness analysis in Canada (CADTH)

| Country                        | Canada                                                       |                                    |
|--------------------------------|--------------------------------------------------------------|------------------------------------|
|                                | Manufacturer                                                 | Manufacturer                       |
| Organization                   | CADTH                                                        | ·                                  |
| URLs                           | https://cadth.ca/sites/default/files/pdf/car-t/ct0001-       | https://cadth.ca/sites/default/fil |
|                                | op0538-in-brief-e.pdf                                        | es/pdf/car-t/op0538-               |
|                                |                                                              | tisagenlecleucel-economic-         |
|                                |                                                              | report-DLBCL-jan2019.pdf           |
| Target technology              | Tisagenlecleucel                                             | Same as in the left                |
| Results                        | Conditional recommendation                                   | Same as in the left                |
| If conditionally recommended,  | On the condition that there is a reduction in price          | Same as in the left                |
| details of the condition       |                                                              |                                    |
| Disease                        | Adult patients with relapsed or refractory large B-cell      | Same as in the left                |
|                                | lymphoma after two or more lines of systemic therapy         |                                    |
|                                | including diffuse large B-cell lymphoma 33 (DLBCL) not       |                                    |
|                                | otherwise specified, high grade B-cell lymphoma and          |                                    |
|                                | DLBCL arising from follicular lymphoma                       |                                    |
| Dosage                         | Tisagenlecleucel is recommended as a single, onetime         | Same as in the left                |
|                                | treatment (0.6 to 6.0 x $10^8$ CAR-positive viable T cells). |                                    |
| Comparator                     | salvage chemotherapy                                         | Same as in the left                |
| Incremental cost-effectiveness | For r/r DLBCL, tisagenlecleucel, compared with palliative    | Same as in the left                |

| ratio (ICER) | chemotherapy, was associated with an incremental cost per |  |
|--------------|-----------------------------------------------------------|--|
|              | QALY of CAD\$211,870.                                     |  |

#### Table 1-3-6 Details of cost-effectiveness analysis in Australia (MSAC)

| Country                       | Australia                                      |                                               |
|-------------------------------|------------------------------------------------|-----------------------------------------------|
|                               | Manufacturer                                   | Academic analysis                             |
| Organization                  | MSAC                                           |                                               |
| URLs                          | http://www.msac.gov.au/internet/msac/pub       | Same as in the left                           |
|                               | lishing.nsf/                                   |                                               |
|                               | Content/1519.1-public                          |                                               |
| Target technology             | Tisagenlecleucel                               | Same as in the left                           |
| Results                       | Support                                        | Conditional recommendation                    |
| If conditionally recommended, | An initial progress review at Year 1 to        | Risk-sharing arrangement                      |
| details of the condition      | assess appropriateneness of patient            | Treatment must be delivered by a              |
|                               | eligibility criteria and patient numbers, with | haematologist working in a multi-             |
|                               | a full review of clinical effectiveness,       | disciplinary team specialising in the         |
|                               | costeffectiveness and budget impact to be      | provision of CAR-T cell therapy;              |
|                               | conducted by the MSAC no later than 2          | Treatment must be delivered in a tertiary     |
|                               | years post the commencement of public          | public hospital with appropriate credentials; |
|                               | subsidy                                        | Governance and prescribing rules to ensure    |
|                               |                                                | treatment is directed to patients most likely |
|                               |                                                | to benefit;                                   |
|                               |                                                | No payment for tisagenlecleucel for an        |
|                               |                                                | unsuccessful infusion;                        |

|         |                                             | • No payment for tisagenlecleucel if a patient |
|---------|---------------------------------------------|------------------------------------------------|
|         |                                             | is apheresed but does not receive the          |
|         |                                             | infusion of engineered lymphocytes;            |
|         |                                             | · A limit to one successful CAR-T infusion per |
|         |                                             | lifetime;                                      |
|         |                                             | • Data on the use of tisagenlecleucel for B    |
|         |                                             | cell lymphoma's in Australia should be         |
|         |                                             | recorded by the Australian Bone Marrow         |
|         |                                             | Transplant Recipient Registry, with the cost   |
|         |                                             | of data collection met by the applicant        |
|         |                                             | • An initial progress review at Year 1 to      |
|         |                                             | assess appropriateneness of patient            |
|         |                                             | eligibility criteria and patient numbers, with |
|         |                                             | a full review of clinical effectiveness,       |
|         |                                             | costeffectiveness and budget impact to be      |
|         |                                             | conducted by the MSAC no later than 2          |
|         |                                             | years post the commencement of public          |
|         |                                             | subsidy (note: Novartis will provide a         |
|         |                                             | submission to initiate this review)            |
| Disease | Adult patients with relapsed or refractory  | Same as in the left                            |
|         | diffuse large B-cell lymphoma (DLBCL) after |                                                |
|         | two or more lines of systemic therapy       |                                                |

| Dosage                         | 0.6 to 6.0 x $10^8$ CAR-positive viable T cells | Same as in the left          |
|--------------------------------|-------------------------------------------------|------------------------------|
|                                | (non-weight based)                              |                              |
| Comparator                     | Salvage chemotherapy with the intention to      | Salvage chemotherapy regimen |
|                                | proceed to allo- or auto-SCT                    |                              |
| Incremental cost-effectiveness | NA                                              | Not disclosed                |
| ratio (ICER)                   |                                                 |                              |

#### [Review on the submission by the manufacturer in Chapter 1]

Although generally appropriate, the following matters were inconsistent with the description in the reports by the health technology assessment agency.

For the UK (SMC), there is a discrepancy between Table 1-1 and Table 1-3-2 in the manufacturer's report. Table 1-3-2 referred to conditional recommendation.
An ICER was reported for France (HAS). The comparator at this time was salvage chemotherapy with an ICER of 294,381 €/QALY over a 10-year time horizon..

• For Australia (MSAC), conditionally recommended by multiple conditions for price reduction and reimbursement.

• There are no comparison data such as randomized controlled trials (RCTs) that evaluated the efficacy and safety of tisagenlecleucel. There are no efficacy or safety data based on direct comparison with the comparator. This has a significant impact on the uncertainty of results.

## 2. Systematic review (SR)

#### 2.1 Clinical questions by the academic group

#### Table 2-1-1 Clinical question of SR

| Item         | Establishment of academic analysis                                              |  |
|--------------|---------------------------------------------------------------------------------|--|
|              | Adult patients with relapsed or refractory DLBCL                                |  |
|              | However, limited to patients who meet any of the following criteria             |  |
|              | and are not indicated for autologous hematopoietic stem cell                    |  |
| Population   | transplantation (ASCT) or relapsed after ASCT:                                  |  |
| ropulation   | <ul> <li>Failure to achieve a complete response with chemotherapy or</li> </ul> |  |
|              | recurrence with chemotherapy after at least two chemotherapies                  |  |
|              | in patients with initial disease and at least one chemotherapy                  |  |
|              | after recurrence in patients with relapsed disease                              |  |
| Intonyoption | The following therapies for the indication in the population:                   |  |
| Intervention | • Tisagenlecleucel                                                              |  |
| Comparator   | Clinically used salvage chemotherapy                                            |  |
|              | Any of the following outcomes:                                                  |  |
|              | Survival (duration)                                                             |  |
|              | Overall survival rate                                                           |  |
|              |                                                                                 |  |
|              | • Efficacy                                                                      |  |
|              | Event-free survival                                                             |  |
|              | Disease-free survival                                                           |  |
| Outcome      | Progression-free survival (PFS)                                                 |  |
| Outcome      | Response rate                                                                   |  |
|              | Remission rate                                                                  |  |
|              | Recurrence rate                                                                 |  |
|              |                                                                                 |  |
|              | • Safety                                                                        |  |
|              | Adverse events                                                                  |  |
|              |                                                                                 |  |
|              | Health-related quality of life (HRQL)                                           |  |

| Study design | • RCT                                                             |
|--------------|-------------------------------------------------------------------|
|              | Controlled study                                                  |
|              | • Single arm study                                                |
|              | <ul> <li>Observational studies in some cohorts of RCTs</li> </ul> |
| Literature   |                                                                   |
| search       | From January 1, 2019 to September 24, 2020                        |
| period       |                                                                   |

#### 2.2 Study design of SR

#### 2.2.1 Inclusion and exclusion criteria for clinical study

| Item         | Inclusion criteria                               | Exclusion criteria                              |
|--------------|--------------------------------------------------|-------------------------------------------------|
|              | <ul> <li>Adult patients with relapsed</li> </ul> | Patients with low-grade non-                    |
|              | or refractory DLBCL treated                      | Hodgkin's lymphoma                              |
|              | with $\geq 2$ lines of                           | <ul> <li>Population in which &lt;80%</li> </ul> |
|              | chemotherapy who have                            | patients underwent R-CHOP                       |
|              | failed, are ineligible for, or do                | therapy                                         |
|              | not consent to ASCT                              | <ul> <li>Patients who meet the</li> </ul>       |
|              | <ul> <li>Non-specified DLBCL,</li> </ul>         | following criteria                              |
|              | primary mediastinal large B-                     | Patients with active hepatitis B                |
| Population   | cell lymphoma, high-grade B-                     | infection                                       |
| Fopulation   | cell lymphoma, or DLBCL                          | Patients with active hepatitis C                |
|              | arising from follicular                          | infection                                       |
|              | lymphoma                                         | Patients with active human                      |
|              | • $\geq$ 80% patients with DLBCL                 | immunodeficiency virus                          |
|              | arising from DLBCL or                            | infection                                       |
|              | follicular lymphoma if other                     | Patients with central nervous                   |
|              | histology is included and                        | system lesion caused by                         |
|              | results for the DLBCL                            | malignant tumor                                 |
|              | subgroup are not reported                        |                                                 |
|              | Available therapies                              | Therapies not clinically used                   |
| Intervention |                                                  | CAR-T therapy other than                        |
|              |                                                  | tisagenlecleucel                                |
| Comparator   | No restrictions                                  |                                                 |
|              | At least one of the following                    |                                                 |
|              | outcomes:                                        |                                                 |
| Outcome      | <ul> <li>Survival (duration)</li> </ul>          |                                                 |
|              | OS                                               |                                                 |
|              |                                                  |                                                 |

## Table 2-2-1 Eligibility criteria

|              | Efficacy                                     |                                             |
|--------------|----------------------------------------------|---------------------------------------------|
|              | Event-free survival                          |                                             |
|              | Disease-free survival                        |                                             |
|              | PFS                                          |                                             |
|              | Response rate                                |                                             |
|              | Remission rate                               |                                             |
|              | Recurrence rate                              |                                             |
|              |                                              |                                             |
|              | Frequency and timing of                      |                                             |
|              | stem cell transplantation                    |                                             |
|              |                                              |                                             |
|              | • Safety                                     |                                             |
|              | Adverse events                               |                                             |
|              |                                              |                                             |
|              | Health-related quality of life               |                                             |
|              | (HRQL)                                       |                                             |
|              | • RCT                                        | <ul> <li>Sample size less than 5</li> </ul> |
|              | <ul> <li>Controlled study</li> </ul>         |                                             |
| Study design | <ul> <li>Single arm study</li> </ul>         |                                             |
|              | <ul> <li>Observational studies in</li> </ul> |                                             |
|              | some cohorts of RCTs                         |                                             |
|              | Research report                              | • Abstract                                  |
| Type of      |                                              | • Note                                      |
| literature   |                                              | Editorial                                   |
|              |                                              | • Letter                                    |
| Language     | English or Japanese                          |                                             |

#### 2.2.2 Database

PubMed

Ichushi

#### 2.2.3 Search formula

#### Table 2-2-3-1 Search formula for PubMed

| Item       | Serial<br>number | Search formula                                                 |  |
|------------|------------------|----------------------------------------------------------------|--|
| Population | #1               | "lymphoma, large b-cell, diffuse"[MeSH] OR "lymphoma,          |  |
|            |                  | primary cutaneous anaplastic large cell"[MeSH] OR              |  |
|            |                  | DLBCL OR "Diffuse large B-cell lymphoma" OR                    |  |
|            |                  | ((Lymphoma*[TIAB]) AND (diffuse[TIAB] OR "B-                   |  |
|            |                  | Cell"[TIAB] OR "Large Cell"[TIAB] OR Anaplastic[tiab] O        |  |
|            |                  | Primary[TIAB] OR "Aggressive NHL"[TIAB] OR "non-               |  |
|            |                  | Hodgkin*"[TIAB]))                                              |  |
|            | #2               | Recurrence[TIAB] OR recurrent[TIAB] OR                         |  |
|            |                  | recurring[TIAB] OR refractory[TIAB] OR relaps*[TIAB]           |  |
|            |                  | OR "R/R"[TIAB] OR fail*[TIAB]                                  |  |
|            | #3               | #1 AND #2                                                      |  |
| Study      | #4               | "Clinical Trials as Topic"[Mesh] OR "Clinical Trial" [PT] OR   |  |
| design     |                  | "Randomized Controlled Trials as Topic"[Mesh] OR               |  |
|            |                  | "Randomized Controlled Trial" [PT] OR "Cross-Over              |  |
|            |                  | Studies"[Mesh] OR "Prospective Studies"[Mesh] OR               |  |
|            |                  | random* OR "random allocation" OR randomized OR                |  |
|            |                  | randomised OR "double-blind" OR "singleblind" OR               |  |
|            |                  | "single blind" OR "double blind" OR "clinical trial" "phase    |  |
|            |                  | 1" OR "phase 2" OR "phase 1/2" OR "phase 1/phase 2"            |  |
|            |                  | OR "phase 3" OR "phase 4" OR "Clinical Study"[PT] OR           |  |
|            |                  | "Clinical Trial, Phase I"[PT] OR "Clinical Trial, Phase        |  |
|            |                  | II"[PT] OR "Clinical Trial, Phase III"[PT] OR "Clinical Trial, |  |
|            |                  | Phase IV" [PT] OR "Controlled Clinical Trial"[PT] OR           |  |
|            |                  | "Multicenter Study"[PT] OR placebo* OR "prospective            |  |
|            |                  | study" OR singlearm OR "single arm" OR open-label OR           |  |
|            |                  | "open label" OR trial OR "nonblinded" OR non-blinded OR        |  |
|            |                  | non-randomized OR nonrandomized OR non-randomised              |  |
|            |                  | OR nonrandomised OR parallel-group OR "parallel study"         |  |
|            |                  | OR superiority OR non-inferiority OR change OR evaluat*        |  |

|               |    | OR prospectiv* OR retrospective* OR baseline OR cohort  |
|---------------|----|---------------------------------------------------------|
|               |    | or consecutive* OR compare* OR compara* OR "case        |
|               |    | series" OR "comparative studies" OR "follow-up studies" |
|               |    | OR registry OR observational                            |
| Limitation of | #5 | #3 AND #4                                               |
| integration   | #6 | #5 AND 2019:2020[DP]                                    |
| and search    |    |                                                         |
| period        |    |                                                         |

| Item          | Serial<br>number | Search formula                                            |
|---------------|------------------|-----------------------------------------------------------|
| Population    | #1               | リンパ腫-びまん性大細胞型 B 細胞性/TH or びまん性大細胞型 B                      |
|               |                  | 細胞性リンパ腫/AL or "Diffuse large B-cell lymphoma"/AL          |
|               |                  | or ((リンパ/AL or Lymphoma/AL) and (原発性/AL or                |
|               |                  | primary/AL or 未分化/AL or anaplastic/AL or 攻撃性/TH or        |
|               |                  | 攻撃性/AL or aggressive/AL or びまん性/AL or diffuse/AL          |
|               |                  | or B 細胞/TH or B 細胞/AL or B-Cell/AL or "B cell"/AL or      |
|               |                  | 大細胞/AL or "Large Cell"/AL or リンパ腫-非 Hodgkin/TH or         |
|               |                  | 非ホジキン/AL or non-Hodgkin/AL or "non Hodgkin"/AL)           |
|               | #2               | (再発/TH or 再発/AL or relapse/AL) or (難治性/AL or              |
|               |                  | refractory/AL) or 失敗/AL                                   |
|               | #3               | #1 AND #2                                                 |
| Study design  | #4               | ランダム化比較試験/TH or "randomized controlled trial"/AL          |
|               |                  | or "randomized controlled trials"/AL or ランダム割付け/TH        |
|               |                  | or ランダム化/AL or 無作為/AL or クロスオーバー研究/TH or                  |
|               |                  | クロスオーバー試験/AL "Cross-Over Studies"/AL or 二重盲検              |
|               |                  | 法/TH or 二重盲検/AL or 一重盲検法/TH or 単盲検/AL or 非                |
|               |                  | 盲検 /AL or プラセボ/TH or プラセボ/AL or 臨床試験/TH or                |
|               |                  | 臨床試験/AL or "Clinical trials"/AL or "Clinical trial"/AL or |
|               |                  | 比較試験/AL or 比較検討/AL or 対照試験 /AL or 比較研究                    |
|               |                  | /AL or 対照研究/AL or "臨床研究・疫学研究"/TH or "Clinical             |
|               |                  | study"/AL or "Clinical studies"/AL or "Comparative        |
|               |                  | study"/AL or "Comparative studies"/AL or "Comparative     |
|               |                  | research"/AL or "comparison study"/AL or "comparison      |
|               |                  | research"/AL or 観察研究/TH or 観察研究/AL or                     |
|               |                  | "Observational study"/AL or "Observational studies"/AL    |
|               |                  | 非ランダム化/AL or コホート/AL or 追跡研究/TH or フォローア                  |
|               |                  | ップ研究/AL or 並行研究/AL                                        |
| Limitation of | #5               | #3 AND #4                                                 |
| integration   | #6               | #5 AND (DT=2019:2020)                                     |
| and search    |                  |                                                           |
| period        |                  |                                                           |

Table 2-2-3-2 Search formula for Ichushi

#### 2.2.4 Other

No special notes

#### 2.3 Search results

As a result of a SR, JULIET study, a clinical trial of tisagenlecleucel, was obtained. This literature was also considered in the evaluation of the additional benefit of manufacturers, and no new qualified literature was obtained to evaluate the additional benefit.

#### Figure 2-3-1 Flow chart of SR



#### [Review on submission by the manufacturer in Chapter 2]

The results of the SR are:

additional benefit

Completely consistent with those submission by the manufacturer
 Overall consistent and contains all important literature to evaluate

- □ There is a discrepancy in the results, and there is a lack of important literature to evaluate additional benefit.
- □ Other (

<u>Differences from the SR performed by the manufacturer (method).</u>
 The results of the SR conducted by the manufacturer are generally acceptable.
 On the other hand, since the existing literature search period is from 2019. An additional search limited to Japanese literatures

was performed until 2019.

Since the additional search should not be confined to the Japanese population, the academic analysis also conducted both English and Japanese literature search from 2019 to the latest time point (September 24, 2020).

• Differences from the SR performed by the manufacturer (result).

The number of literatures included in the screening differed because the search period was different. However there was no difference in the literatures critical to the evaluation of additional benefit.

• Validity of the SR performed by the manufacturer.

It is not appropriate to limit the scope of SR to the Japanese population. However, the review included all the literatures critical to the evaluation of additional benefit. )

#### 2.4 Evaluation of additional benefit

The manufacturer's explanation about the presence or absence of additional benefit is reasonable for population aged <70 years and that aged  $\geq70$  years, with additional benefit for the comparator.

#### Table 2-4-1 Evaluation of additional benefit [Population aged <70 years]</th>

|                                      | Manufacturer                                         | Academic analysis   |
|--------------------------------------|------------------------------------------------------|---------------------|
| Population                           | DLBCL patients aged <70 years                        | Same as in the left |
| Intervention                         | Tisagenlecleucel                                     | Same as in the left |
| Comparator                           | Rescue chemotherapy +/- allogeneic HSCT              | Same as in the left |
| Outcome                              | OS                                                   | Same as in the left |
| Additional benefit                   | additional benefit is shown                          | Same as in the left |
| (Yes/No)                             | $\Box$ "No additional benefit" or "Cannot be judged" |                     |
| Additional benefit<br>(Study design) | $\Box$ Meta-analysis of RCTs $\Box$ Single RCT       | Same as in the left |
|                                      | Prospective comparative observational studies        |                     |
|                                      | Indirect comparison of RCT                           |                     |
|                                      | Comparison of single-arm studies                     |                     |
|                                      | No clinical study data                               |                     |

|                    |                                                            | The point estimate of conditional HR assumes      |
|--------------------|------------------------------------------------------------|---------------------------------------------------|
|                    | The conditional HR (OS) was (95% CI:                       | the OS event is to approximately , which is       |
|                    | ]) in the MAIC analysis of the population aged             | considerably smaller than 1. It is indicated that |
| Additional benefit | <70 years in JULIET Study versus CORAL extension           | this product has the number of events             |
| (Reason)           | studies (all patients were aged $\leq$ 70 years). Based on | decreased by approximately % even at the          |
|                    | these results, it was judged that this product has         | upper limit of confidence interval. Therefore the |
|                    | additional benefit for the comparator.                     | judgment of manufacturer on additional benefit    |
|                    |                                                            | is valid.                                         |

## Table 2-4-2 Evaluation of additional benefit [Population aged $\geq$ 70 years]

|                    | Manufacturer                                             | Academic analysis   |
|--------------------|----------------------------------------------------------|---------------------|
| Population         | DLBCL patients aged ≥70 years                            | Same as in the left |
| Intervention       | Tisagenlecleucel                                         | Same as in the left |
| Comparator         | Rescue chemotherapy                                      | Same as in the left |
| Outcome            | OS                                                       | Same as in the left |
| Additional benefit | Additional benefit is not shown.                         | Same as in the left |
| (Yes/No)           | $\square$ "No additional benefit" or "Cannot be judged " |                     |
| Additional benefit | $\Box$ Meta-analysis of RCTs $\Box$ Single RCT           | Same as in the left |
| (Study design)     | Prospective comparative observational studies            |                     |
|                    | □ Indirect comparison of RCT                              |                                                      |
|--------------------|-----------------------------------------------------------|------------------------------------------------------|
|                    | Comparison of single-arm studies                          |                                                      |
|                    | No clinical study data                                    |                                                      |
|                    | As for the efficacy data in the intervention group        | Since the number of patients aged $\geq$ 70 years is |
|                    | (tisagenlecleucel), the number of patients aged $\geq$ 70 | very limited and the number of events is             |
|                    | years who correspond to this population is limited to     | , the academic analysis also                         |
|                    | among patients who received this product in the           | supports the use of data from the entire             |
|                    | JULIET study. In addition, the amount of information      | population to evaluate additional benefit in the     |
|                    | for analysis of OS and progression-free survival          | population aged $\geq$ 70 years.                     |
|                    | (number of events by the survival time analysis           | The point estimate of conditional HR assumes         |
|                    | method) is patients. Originally, the JULIET study was     | the OS event is approximately <b>1999</b> , which is |
| Additional bonofit | designed without assuming analysis by age, resulting      | considerably smaller than 1. It is indicated that    |
| (Roscon)           | in a very small sample size and reduced statistical       | this product has the number of events                |
| (RedSUI)           | power when stratified by age. Therefore, it is difficult  | decreased by approximately 📕 % even at the           |
|                    | to examine the comparability in indirect comparison       | upper limit of confidence interval. Therefore the    |
|                    | and to adjust the data using statistical methods. Based   | judgment of manufacturer on additional benefit       |
|                    | on the above, it is extremely difficult to judge only the | is valid.                                            |
|                    | additional benefit based on the results of extraction of  |                                                      |
|                    | patients aged $\geq$ 70 years in the JULIET Study. In C2H |                                                      |
|                    | of the 3rd meeting of the Expert Committee of Cost-       |                                                      |
|                    | Effectiveness Evaluation held on 2019, a                  |                                                      |
|                    | comment was obtained that if it becomes difficult to      |                                                      |

| show the additional benefit by constructing a             |
|-----------------------------------------------------------|
| subpopulation that was not originally assumed, it is      |
| acceptable to refer to the results of the entire          |
| population before segmentation, and in this case, the     |
| entire population without age division. The conditional   |
| HR was (95% CI: [ ]) in the MAIC                          |
| analysis (OS) between the entire population in the        |
| JULIET Study and the CORAL extension studies (all         |
| patients were aged $\leq$ 70 years). Since the additional |
| benefit was confirmed by indirect comparison of the       |
| entire population, it was judged that this product has    |
| additional benefit for the comparator also for this       |
| patient population.                                       |

# 3. Cost-effectiveness analysis by the academic group

# **3.1** Should the cost-effectiveness analysis submitted by the manufacturer be reconsidered?

| □ Nothing special | $\rightarrow$ | Terminated in this section |
|-------------------|---------------|----------------------------|
| ✓ Yes             | $\rightarrow$ | Continued below            |

# 3.2 Summary of analysis (revise) by the academic group

# **3.2.1** Major points that need to be reconsidered (significant impact on results)

- a) Mean age in the target patient population [only in the population aged
   <70]</li>
- b) Extrapolation of survival curves (PFS and OS) [only in the population aged <70 years]</li>
- c) Data source of survival curves (PFS and OS) for tisagenlecleucel [only in the population aged ≥70 years]
- d) QOL scores for PFS

# 3.2.2 Minor points that need to be reconsidered (other than 3.2.1)

- a) Cost parameters (drug prices)
- b) Cost parameters (salvage chemotherapy)
- c) Cost of PFS (Excel model)

# **3.3 Analysis by the academic group for major points**

# 3.3.1 Mean age in the patient population [only in the population aged <70 years]

# Table 3-3-1-1 Corresponding part of report by manufacturer

| In the reports, submitted by the manufacturer |     |                                               |  |  |
|-----------------------------------------------|-----|-----------------------------------------------|--|--|
| Section Number of pages                       |     | Start line number<br>(or figure/table number) |  |  |
| 5.1.4                                         | 176 | 5                                             |  |  |

[Description of report] Change in starting age (DLBCL only) The starting age for the bace case analysis was set at years for the population to be analyzed aged <70 years and  $\sim$  years at that aged  $\geq$ 70 years (Section 5.2). These are the mean age of patients included in the tisagenlecleucel efficacy data by population to be analyzed. In general, the age representative of the patients included in the efficacy data will be used as the starting age for the analysis in the cost-effectiveness analysis. For the population to be analyzed aged  $\geq$ 70 years, we received a comment from C2H that the starting age for analysis was 70 years in the discussion with C2H 2019, and it can be said that the age of years is a held on more conservative setting. In addition, according to an Internet survey conducted on clinicians by us (for details, see 5.1.5), the intention to prescribe CAR-T therapy including tisagenlecleucel varies greatly by age group, and it is therefore considered inappropriate to use age composition such as cancer registration data and epidemiological data as the starting age for analysis. As a scenario analysis, ICER was analyzed when the starting age for analysis was changed (Section 5.1.2). The mean age of DLBCL patients aged <70 years was calculated from the data of which was considered in the scenario analysis. When the starting age was set at years, there was no major difference in the results from the base-case. For patients aged

≥70 years, no scenario analysis has been set because the intention of prescription is markedly limited, and since the basic analysis was a conservative analysis compared with the patients aged 70 years for which comments were given by C2H, scenario analysis regarding the starting age has not been performed.

#### [Details of academic analysis (revision)]

The mean age of the population in the base-case analysis was changed to 57 years instead of vears. It was higher than that used by the manufacturer (early 50s).

The manufacturer used the mean age of the population enrolled in the clinical studies. However the characteristics of patients enrolled in the clinical studies are not consistent with those of patients treated with tisagenlecleucel in the actual clinical practice. Therefore, the mean age of the patient with DLBCL aged <70 who underwent autologous transplantation was estimated by the following procedures, usingNDB;National Database of Health Insurance Claims and Specific Health Checkups of Japan. In principle, the patients treated with tisagenlecleucel have undergone autologous transplantation. Therefore, the age of patients estimated from the claim database is more appropriate. This value is also consistent with the mean age based on data from

submitted by the manufacturer.

#### Table 3-3-1-2 Changes of the starting age

|              | Manufacturer's | Academic |
|--------------|----------------|----------|
|              | submission     | analysis |
| Starting age |                | 57       |

[Estimation method and results based on the claims database]

Patients aged <70 years with DLBCL-related disease name (International Classification of Diseases-10 code: C833) between October 2018 and September 2019 were included. The month when the autologous transplantrelated claim code (hematopoietic stem cell transplantation [bone marrow transplantation] [autologous transplantation]: 150266410, hematopoietic stem cell transplantation [peripheral blood stem cell transplantation] [autologous transplantation]: 150266310) is included in the patients was defined as the month when the stem cell transplantation was performed in the DLBCL patient. The age was estimated from the age class recorded in this month (5-year increments). The mean age was calculated by multiplying the frequency for each class by the class value and dividing by the number of patients. The median was also calculated.

As a result, 380 patients were included (the table below). Mean and median age were 56.8 and 57.0 years, respectively.

| Age class          | n   | %      |
|--------------------|-----|--------|
| 0 to 39 years old* | 24  | 6.3%   |
| 40-44              | 15  | 3.9%   |
| 45-49              | 28  | 7.4%   |
| 50-54              | 56  | 14.7%  |
| 55-59              | 67  | 17.6%  |
| 60-64              | 114 | 30.0%  |
| 65-69              | 76  | 20.0%  |
| Total              | 380 | 100.0% |

#### Table 3-3-1-3 Number of patients by age class

\*For the age of 0 to 39 years, a total value is shown because there are cells in which the number of patients is less than 10.

# 3.3.2 Extrapolation of survival curves (PFS and OS) [only in the population aged <70 years]

| In the reports, etc. submitted by the manufacturer |                 |                              |  |  |
|----------------------------------------------------|-----------------|------------------------------|--|--|
| Saction                                            | Number of pages | ges (or figure/table number) |  |  |
| Section                                            | Number of pages |                              |  |  |
| 4.2.1.2                                            | 101-103         | Figure 27, 28                |  |  |

#### Table 3-3-2-1 Corresponding part of report by manufacturer

[Description of report]

Estimation of survival curve (OS)

The OS associated with tisagenlecleucel infusion was based on the data from the JULIET trial among patients <70 years (data cut-off: \_\_\_\_\_\_). It was defined as starting from the time of infusion per JULIET trial protocol. The OS for patients in the tisagenlecleucel arm but not infused was the same as that of the salvage chemotherapy. The OS associated with salvage chemotherapy was derived from the published Kaplan-Meier (KM) curves in the CORAL extension studies, and was defined from the time of last relapse.[11], [12] CORAL is considered to be more appropriate for this age-specific population group since all patients are less than 70 years old. Pseudo-patient level data were then derived based on the KM data using the algorithm outlined in Guyot et al. 2012.[35] The number of event information was incorporated into the reconstruction of individual patient data (IPD). For both tisagenlecleucel infused patients and salvage chemotherapy, the

For both tisagenlecleucel infused patients and salvage chemotherapy, the observed OS were used during the trial period until year 3. Afterwards, those who remained alive were assumed long-term survivors of DLBCL. Maurer et al., 2014 identified "patients with DLBCL who achieve event-free status at 24 months (EFS24) have a subsequent overall survival equivalent to that of the age- and sex-matched general population", based on prospective patient data. The assumption of 3 years as a cure point is considered more conservative.[42] The long-term DLBCL survival was modelled using the 2018 Japan life table, with a mortality adjustment using the standardized mortality ratio (SMR) of DLBCL longterm survivors published in literature.[38], [42] The same mortality risk was applied to all patients who remained alive from year 3 onwards in the model. This assumption reduced some of the long-term uncertainties arising from data extrapolation beyond the maximum reported follow-up. A targeted literature review was conducted to identify publications to inform long-term survival for the study population (registry or SMR studies). Maurer et al., 2014 was identified as the most relevant input source and used to inform the mortality of long-term DLBCL survivors.[42] The predicted OS curves for tisagenlecleucel and salvage chemotherapy in the base-case analysis are reported in Figure 27.

### Estimation of survival curve (PFS)

The PFS of tisagenlecleucel infused patients was based on the data from the JULIET trial (data cut-off: **Sector**) among patients <70 years. To be consistent with the approach used for the OS estimation, observed data were used during the trial period until year 3. After year 3, the cumulative survival probabilities of PFS were assumed to flatten up until they reached OS. PFS was assumed to be less than or equal to OS at all time points. The PFS for patients in the tisagenlecleucel arm but not infused was the same as that of the salvage chemotherapy.

PFS data for salvage chemotherapy were not available in the literature. In the absence of data, the PFS curve was derived from the OS curve assuming a constant cumulative HR over time, i.e., the cumulative hazard function for PFS would be proportional to cumulative hazard function for OS. The ratio was based on the (R)-ICE and (R)-DHAP arms from Gisselbrecht et al. 2010.[43] To estimate an overall cumulative HR between OS and PFS, the ratio was first estimated as the natural log of OS probability divided by the natural log of PFS probability at yearly intervals until the end of the observed period. The overall cumulative HR between OS and PFS was then calculated as the average of cumulative HRs at all yearly intervals. This assumption is justifiable on the basis that PFS is highly correlated with OS.[44] The predicted PFS curves for tisagenlecleucel and salvage chemotherapy in the base-case analysis are reported in Figure 28.

# [Details of academic analysis (revision)]

According to the manufacture's analysis, after three years (cure point) the OS

function was extrapolated using mortality rate which was estimated by multiplying SMR (standardized mortality ratio) of the long survivor by mortality rate of general people. However, this extrapolation cannot consider excess mortality in PD/RL patients, and the OS was overestimated. Therefore, this cannot be regarded as an appropriate OS extrapolation. For example, the life expectancy of the PD/RL patient after 3 years was approximately 10 years or more in the population aged <70 years.

In addition, the PFS function was extrapolated by a horizontal line (y=C; C is a constant) assuming that no event occurs. However, even the patients with PFS should experience events such as death due to other causes. Death events that are reflected in OS should be handled as events in PFS. Such extrapolation of EFS function is not appropriate.

In the manufacturer's response to our inquiry (dated 2020), it was described "After 3 years of treatment with Kymriah, long-term survival (cure) was assumed, and the subsequent OS was extrapolated using the SMR of Maurer et al. in 2014.". The fact that long-term survival (cure) can be achieved by tisagenlecleucel was acceptable. This could be achieved by the "absence of recurrence (after the 3rd year)". It did not justify the extrapolation of the EFS curve after the 3rd year (cure point) by the horizontal line. It is not also appropriate that the OS curve extrapolation method is changed when the 5th year started.

The OS function was extrapolated using the parametric function estimated by the manufacturer when the Kaplan-Meier curve is interrupted (the Cycle 37 after the 3rd year (Cycle 36)). The manufacturer did not use a parametric function to estimate survival time curves for DLBCL population. Therefore, by extrapolating the integrated function by weighting each parametric function based on the weighted AIC, we estimate OS curve.

It does not actually occur that the mortality rate estimated by the parametric OS function is smaller than the SMR-based mortality rate by the manufacturer. If such case occurs, the OS function was extrapolated by switching the curve to the mortality rate based on the SMR at the time point.

The PFS function was extrapolated after the Cycle 37 year using the standardized mortality ratio used by the manufacturer to account for the deaths other than other disease. However, if the OS and PFS functions crossed, the OS function was also extrapolated using the PFS function estimation method.

# Table 3-3-2-2 Estimated life years

|            | Manufacturer's submission |                | Academic analysis (starting age: |                |
|------------|---------------------------|----------------|----------------------------------|----------------|
|            | (starting ag              | e: years)      | 57 ye                            | ears)          |
|            | Tisagenlecleucel          | Salvage        | Tisagenlecleucel                 | Salvage        |
|            | group                     | chemotherapy   | group                            | chemotherapy   |
|            |                           | +/- allogeneic |                                  | +/- allogeneic |
|            |                           | HSCT group     |                                  | HSCT group     |
| Life years |                           |                |                                  |                |
| PFS        |                           |                |                                  |                |
| PD/RL      |                           |                |                                  |                |

Figure 3-3-2-1 Estimated survival curve by manufacturer for the tisagenlecleucel group



Figure 3-3-2-2 Estimated survival curve by academic analysis for the tisagenlecleucel group



Figure 3-3-2-3 Estimated survival curve by manufacturer for salvage chemotherapy +/- allogeneic HSCT group



Figure 3-3-2-4 Estimated survival curve by academic analysis for salvage chemotherapy +/- allogeneic HSCT group



# 3.3.3 Data source of survival curves (PFS and OS) for tisagenlecleucel [only in the population aged ≥70 years]

| In the reports, etc. submitted by the manufacturer |                 |                          |  |  |
|----------------------------------------------------|-----------------|--------------------------|--|--|
| Section                                            | Number of pages | Start line number        |  |  |
| Section                                            | Number of pages | (or figure/table number) |  |  |
| 4.2.1.3                                            | 103-105         | Figure 29, 30            |  |  |

| Table 3-3-3-1 Corresponding part of report by manufacture | Table 3-3-3-1 Corresponding part | c of report by manufacture |
|-----------------------------------------------------------|----------------------------------|----------------------------|
|-----------------------------------------------------------|----------------------------------|----------------------------|

[Description of report]

Estimation of survival curve (OS) The OS associated with tisagenlecleucel infusion was based on the data from the JULIET trial among patients  $\geq$ 70 years (data cut-off: ).[29] It was defined as starting from the time of infusion per JULIET trial protocol. The OS for patients in the tisagenlecleucel arm but not infused was the same as that of the salvage chemotherapy. The OS associated with salvage chemotherapy was derived from the published Kaplan-Meier (KM) curves for patients without subsequent SCT in the CORAL extension studies, and was defined from the time of last relapse.[11], [12] Pseudo-patient level data were then derived based on the KM data using the algorithm outlined in Guyot et al. 2012.[35] The number of event information was incorporated into the reconstruction of individual patient data (IPD). For both tisagenlecleucel infused patients and salvage chemotherapy, the observed OS were used during the trial period until year 3. Afterwards, those who remained alive were assumed long-term survivors of DLBCL. Maurer et al., 2014 identified "patients with DLBCL who achieve event-free status at 24 months (EFS24) have a subsequent overall survival equivalent to that of the age- and sex-matched general population", based on prospective patient data. The assumption of 3 years as a cure point is considered more conservative. The longterm DLBCL survival was modelled using the 2018 Japan life table, with a mortality adjustment using the standardized mortality ratio (SMR) of DLBCL longterm survivors published in literature.[38], [42] The same mortality risk was applied to all patients who remained alive from

year 3 onwards in the model. This assumption reduced some of the long-term uncertainties arising from data extrapolation beyond the maximum reported follow-up. A targeted literature review was conducted to identify publications to inform long-term survival for the study population (registry or SMR studies). Maurer et al., 2014 was identified as the most relevant input source and used to inform the mortality of long-term DLBCL survivors.[42] The predicted OS curves for tisagenlecleucel and salvage chemotherapy in the base-case analysis are reported in Figure 29.

#### Estimation of survival curve (PFS)

The PFS of tisagenlecleucel infused patients was based on the data from the JULIET trial (data cut-off: July 1, 2019) among patients  $\geq$ 70 years.[29] To be consistent with the approach used for the OS estimation, observed data were used during the trial period until year 3. After year 3, the cumulative survival probabilities of PFS were assumed to flatten up until they reached OS. PFS assumed to be less than or equal to OS at all time points. The PFS was for patients in the tisagenlecleucel arm but not infused was the same as that of the salvage chemotherapy. PFS data for salvage chemotherapy were not available in the literature.[11], [12] In the absence of data, the PFS curve was derived from the OS curve assuming a constant cumulative HR over time, i.e., the cumulative hazard function for PFS would be proportional to cumulative hazard function for OS. The ratio was based on the (R)-ICE and (R)-DHAP arms from Gisselbrecht et al. 2010.[43] To estimate an overall cumulative HR between OS and PFS, the ratio was first estimated as the natural log of OS probability divided by the natural log of PFS probability at yearly intervals until the end of the observed period. The overall cumulative HR between OS and PFS was then calculated as the average of cumulative HRs at all yearly intervals. This assumption is justifiable on the basis that PFS is highly correlated with OS.[44] The predicted PFS curves for tisagenlecleucel and salvage chemotherapy in the base-case analysis are reported in Figure 30.

#### [Details of academic analysis (revision)]

In analyzing the population aged  $\geq$ 70 years, the manufacturer estimated OS and PFS functions using the data of patients aged  $\geq$ 70 years in the JULIET

Study. However, the proportion of the population aged  $\geq$ 70 years in the JULIET Study was only 66 % (660 %), which was 660 % of the entire population.

As a result, the OS in the population aged  $\geq$ 70 years was 100% at 3 years, which is more than 10% higher than the OS in the population aged <70 years (100%) and the OS in the entire population (100%). In addition, the PFS in the population aged  $\geq$ 70 years was 100% at 3 years, which is more than 10% different from the PFS in the population aged <70 years (100%) and the PFS in the population (100%).

However, it is not appropriate to use the data of small population that is sensitive to random error, unless there is evidence to support that older patient is associated with a greater effect of tisagenlecleucel. Therefore, it is more appropriate to analyze the population aged  $\geq$ 70 years using the data of the entire population by assuming that there is no heterogeneity with the treatment effect in the entire population. The manufacturer uses the entire population to show additional benefit of population aged  $\geq$ 70 years as follows;

"Among patients who received this product in the JULIET Study, only patients aged  $\geq$ 70 years correspond to this population. In addition, the amount of information for analysis of OS and progression-free survival (number of events by the survival time analysis method) is patients. (...) For the above reasons, it is extremely difficult to judge only the additional benefit based on the results of extracting only the patients aged  $\geq$ 70 years in the JULIET study." Only in the estimation of cost-effectiveness, it is inconsistent that limited data of patients aged  $\geq$ 70 years is used..

For the OS and PFS functions through the 3rd year (Cycle 36), the parameters used by the manufacturer in each population shall be weighted by the sample size for each population (aged <70 years,  $\square$ ) and pooled, as we don't have the data of entire population.

Thereafter, the OS and PFS functions were extrapolated in the same manner as Section 3.3.2. However, in and after Cycle 37, the parametric function of OS based on the entire population results in the JULIET Study is not included in the documents/data submitted by the manufacturer. Therefore, the OS function to be used for extrapolation shall be estimated by weighting the function estimated from the population aged <70 years (weighted AIC) and the function estimated from the population aged  $\geq$ 70 years (weighted AIC), respectively. This shall be extrapolated in and after Cycle 37 of the OS function.

|            | Manufacturer     | s submission | Academic analysis |              |
|------------|------------------|--------------|-------------------|--------------|
|            | Tisagenlecleucel | Salvage      | Tisagenlecleucel  | Salvage      |
|            | group            | chemotherapy | group             | chemotherapy |
|            |                  | group        |                   | group        |
| Life years |                  |              |                   |              |
| PFS        |                  |              |                   |              |
| PD/RL      |                  |              |                   |              |

Table 3-3-3-2 Estimated life years

Figure 3-3-3-1 Estimation of survival time curve by manufacturer for the tisagenlecleucel group



Figure 3-3-3-2 Estimation of survival time curve by academic analysis for the tisagenlecleucel group



Figure 3-3-3-3 Estimation of survival time curve by manufacturer for salvage chemotherapy group



Figure 3-3-3-4 Estimation of survival time curve by academic analysis for salvage chemotherapy group



#### 3.3.4 QOL scores for PFS

| Table 3-3-4-1 Correspond | ding part of repo | ort by manufacturer |
|--------------------------|-------------------|---------------------|
|--------------------------|-------------------|---------------------|

| In the reports, etc. submitted by the manufacturer |                 |                          |  |  |
|----------------------------------------------------|-----------------|--------------------------|--|--|
| Section Number of pages Start line number          |                 |                          |  |  |
| Section                                            | Number of pages | (or figure/table number) |  |  |
| 4.2.2.2                                            | 107             | Table 4.2.2.2            |  |  |

[Description of report]

Health states utility

Because JULIET data did not collect EQ-5D data directly, a targeted literature review was conducted to identify publications that report quality-of-life measures for the population. The utility inputs used in the base-case were obtained from Chen et al. 2017, where micro-simulation models were developed to study the cost-effectiveness of precision treatment strategies for DLBCL patients.[33]

These inputs were also used in the most recent CEA model of CAR-T therapies for the adult lymphoma population developed by the Institute for Clinical and Economic Review. In the DSA, an alternative set of utility values were considered based on SF-36 data collected from the JULIET data. A mapping algorithm was used to convert the SF-36 data to derive the utility measures.

#### [Details of academic analysis (revision)]

The manufacturer used 0.83 as a QOL score for PFS. However, this PFS value is almost the same as the population norms of EQ-5D-5L in patients aged  $\geq$ 70 years (male: 0.866, female: 0.828) shown by Shiroiwa et al.[1]. It is possible that QOL scores after the age of 70 may be overestimated.

For this reason, the academic analysis used 0.70, which reflects the actual status more based on Lin JK et al.[2] for the patients with PFS and age of 70 years or older. Therefore, for the population aged <70 years, the QOL score of PFS was set as 0.70 when they reach to 70 years old (if the starting age was set at 57 years, Cycle 156). For the population aged  $\geq$ 70 years, the QOL score of PFS was set as 0.70 from Cycle 0 because the starting age was gears.

# Table 3-3-4-2 QOL scores in PFS

|                           | Manufacturer's   | Academic analysis               |
|---------------------------|------------------|---------------------------------|
|                           | submission       |                                 |
| Population aged <70       | 0.83 (total time | 0.83 (time horizon up to age of |
| years                     | horizon)         | <70 years)                      |
|                           |                  | 0.70 (time horizon after age of |
|                           |                  | 70 years)                       |
| Population aged $\geq$ 70 | 0.83 (total time | 0.70 (total time horizon)       |
| years                     | horizon)         |                                 |

# 3.4 Analysis (revision) by the academic group other than 3.3

## 3.4.1 Cost parameters (drug prices)

| Fable 3-4-1-1 Corresponding | part of report | by manufacturer |
|-----------------------------|----------------|-----------------|
|-----------------------------|----------------|-----------------|

| In the reports, etc. submitted by the manufacturer |                 |                          |  |  |
|----------------------------------------------------|-----------------|--------------------------|--|--|
| Section Number of pages Start line number          |                 |                          |  |  |
| beetion                                            | number of pages | (or figure/table number) |  |  |
| 4.2.3                                              | 108             | 22                       |  |  |

[Description of report] For both B-ALL and DLBCL diseases, the costs for the target technology to be analyzed and the comparator were estimated by the accumulation method based on the medical fee schedule and the National Health Insurance Drug Price Standard as of October 2019 in principle.

# [Details of academic analysis (revision)]

The prices of some medicines used by the manufacturer's analysis, particularly the price of medicines for the salvage chemotherapy, is not consistent with the latest drug prices.

In the "Guideline for Analysis of Cost-Effectiveness Evaluation by the Central Social Insurance Medical Council 2nd Version", it is stated that "Unit costs should be derived from the latest medical fee schedule, National Health Insurance Drug Price Standard , or similar resources. It is particularly essential to use the latest unit costs for the selected technology or comparator(s)." Analysis by the academic group shall be performed using the latest drug price (as of April 2020) [3]. For dexamethasone (oral) and prednisone (oral), the cited product is also inappropriate (originally, injection shall be used), so the revision was shown in Section 3.4.2.

| Table 3-4-1-2 Dru | g prices | that need | to | be changed |
|-------------------|----------|-----------|----|------------|
|-------------------|----------|-----------|----|------------|

|                    | Drug price                       | Drug price                              |                                         |
|--------------------|----------------------------------|-----------------------------------------|-----------------------------------------|
| Drug name          | to be quoted by the              | (before                                 | (after                                  |
|                    | manufacturer                     | change)                                 | change)                                 |
| Etoposido          | VoPosid Injection 100 mg 5 ml    | 4,172.0                                 | 3,680.0                                 |
| Ltoposide          |                                  | yen                                     | yen                                     |
| Ifosfamido         | Ifomido for Injection 1 a        | 2,997.0                                 | 2,865.0                                 |
| Inosiannue         | formue for injection i g         | yen                                     | yen                                     |
| Carbonlatin        | Paraplatin Injection 450 mg 45   | 24,464.0                                | 21 155 yen                              |
| Carboplatin        | mL                               | yen                                     | 21,155 yen                              |
| Rituximah          | Rituxan Intravenous Infusion     | 157,855.0                               | 148,996                                 |
| 500 mg 50 mL       |                                  | yen                                     | yen                                     |
| Gemcitahine        | Gemcitabine for I.V. Infusion 1  | 8,495.0                                 | 7 180 ven                               |
| Gemelabilie        | g/25 mL "Sandoz" etc.            | yen                                     | 7,100 yen                               |
| Dexamethasone      | Decadron Injection 6.6 mg 2      | 314 0 ven                               | NΔ                                      |
| (oral)             | mL                               | 514.0 yen                               |                                         |
| Cisplatin          | Cisplatin Intravenous Drip       | 7,099.0                                 | 3,874.0                                 |
|                    | Infusion 50 mg "Pfizer" 100 mL   | yen                                     | yen                                     |
|                    | Methylprednisolone Sodium        | 1 769 0                                 | 1 732 0                                 |
| Methylprednisolone | Succinate for Injection 100 mg   | ven                                     | ven                                     |
|                    | AFP 1 g                          | ych                                     | ych                                     |
| Cytarabine         | Cytarabine for I.V. Infusion 1 g | 5,156.0                                 | 4,715.0                                 |
|                    | "TEVA"                           | yen                                     | yen                                     |
| Dexamethasone      | Decadron Injection 6.6 mg 2      | 314 0 ven                               | 299 0 ven                               |
|                    | mL                               | ST no yen                               | 299.0 yen                               |
| Cyclophosphamide   | Endoxan for Injection 500 mg     | 1,254.0                                 | 1,277.0                                 |
| Cyclophosphamac    |                                  | yen                                     | yen                                     |
|                    | Doxorubicin Hydrochloride        | 4.351.0                                 | 3,957.0                                 |
| Doxorubicin        | Injection 50 mg "Sandoz" 25      | Ven                                     | ven                                     |
|                    | mL etc.                          | , , , , , , , , , , , , , , , , , , , , | , , , , , , , , , , , , , , , , , , , , |
| Vincristine        | Oncovin for Injection 1 mg       | 2,638.0                                 | 2,521.0                                 |
| Vincibulie         |                                  | yen                                     | yen                                     |
| Prednisone (oral)  | Prednisolone Sodium Succinate    | 167.0 yen                               | NA                                      |

|--|

# 3.4.2 Cost parameters (salvage chemotherapy)

### Table 3-4-2-1 Corresponding part of report by manufacturer

| In the reports, etc. submitted by the manufacturer |                   |                          |  |  |
|----------------------------------------------------|-------------------|--------------------------|--|--|
| Section                                            | Start line number |                          |  |  |
| Section                                            | Number of pages   | (or figure/table number) |  |  |
| 4.2.3.2                                            | 127-132           | Table 28                 |  |  |

[Description of report]

Salvage chemotherapy cost

Because there is no consensus on a standard regimen for salvage chemotherapy in r/r DLBCL and CORAL extension studies did not report specific regimens, the treatment cost of salvage chemotherapy was estimated as the average of five different chemotherapy regimens suggested by key opinion leaders in Japan, including (R)-ICE, (R)-GDP, (R)-ESHAP, (R)-DHAP, and (R)-EPOCH. In the basecase, it was assumed that all patients received the treatments in combination with rituximab. Drug acquisition costs were calculated as a function of unit drug costs, dosing, administration cost, and treatment duration. The treatment cost and administration cost of salvage chemotherapy were obtained from the official gazette released by MHLW. For (R)-ICE dosing schedules and cycles were from Kewalramani 2004.[55] For (R)-GDP dosing schedules and cycles were from Crump 2004.[56] For (R)-ESHAP dosing schedule was from Martin 2008, and dosing cycles were from National Guideline Alliance 2016.[22], [57] For (R)-DHAP dosing schedules and cycles were from Oki 2008.[58] For (R)-EPOCH dosing schedule and cycles were from Jermann 2004.[59]

# [Details of academic analysis (revision)]

Although dexamethasone used in (R)-GDP therapy and prednisone used in (R)-EPOCH therapy are both oral drugs, the prices of injections were referred to in the manufacturer's submission. It is necessary to re-calculate with the prices of oral drugs using the latest one (April 2020) [3]. The daily dose was calculated based on body surface area of **\_\_\_\_\_** for the population aged <70

years and for the population aged  $\geq$ 70 years, and the corresponding number of tablets required per day was calculated.

| Drug name               | Brand name in the<br>manufacturer's<br>submission                    | Drug price | Replacing<br>brand name      | Drug price           |
|-------------------------|----------------------------------------------------------------------|------------|------------------------------|----------------------|
| Dexamethasone<br>(oral) | Decadron<br>Phosphate Injection<br>6.6 mg 2 mL                       | JPY 314.0  | LenaDex<br>Tablets 4mg       | JPY 172.1<br>/tablet |
| Prednisone<br>(Oral)    | Prednisolone<br>Sodium Succinate<br>for Injection<br>20 mg "F", etc. | JPY 167.0  | Rrednisolone<br>Tablets 5 mg | JPY 9.8<br>/tablet   |

# Table 3-4-2-2 Drug prices need to be changed

### Table 3-4-2-3 Number of tablets in the population aged <70 years</th>

| Drug name               | Replacing<br>brand name      | Dose per<br>tablet | Daily dose<br>(calculated based<br>on body surface<br>area of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Number of<br>tablets per<br>day |
|-------------------------|------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Dexamethasone<br>(oral) | LenaDex<br>Tablets 4mg       | 4 mg/tablet        | 40 mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40/4 = 10                       |
| Prednisone<br>(Oral)    | Rrednisolone<br>Tablets 5 mg | 5 mg/tablet        | 60× <b>1</b> = <b>1</b> | 120/5 =<br>24                   |

#### Table 3-4-2-4 Number of tablets in the population aged $\geq$ 70 years

| Drug name     | Replacing<br>brand name | Dose per<br>tablet | Daily dose<br>(calculated based<br>on body surface<br>area of | Number of<br>tablets per<br>day |
|---------------|-------------------------|--------------------|---------------------------------------------------------------|---------------------------------|
| Dexamethasone | LenaDex                 | 4 mg/tablet        | 40 mg                                                         | 40/4 = 10                       |

| (oral)     | Tablets 4mg  |             |          |         |
|------------|--------------|-------------|----------|---------|
| Prednisone | Rrednisolone | E ma/tablat | 60× =    | 110/5 = |
| (Oral)     | Tablets 5 mg | 5 mg/tablet | ≒ 110 mg | 22      |

# 3.4.3 Cost of PFS (Excel model)

| In the reports, etc. submitted by the manufacturer |                 |                                               |  |  |  |  |
|----------------------------------------------------|-----------------|-----------------------------------------------|--|--|--|--|
| Section                                            | Number of pages | Start line number<br>(or figure/table number) |  |  |  |  |
| Excel model                                        | NA              |                                               |  |  |  |  |

## Table 3-4-3-1 Corresponding part of report by manufacturer

| [Description of report] |  |
|-------------------------|--|
| NA                      |  |

# [Details of academic analysis (revision)]

As the monthly cost for PFS, different values have to be used for (a) the first year, (b) the second year, (c) the third to fifth years, and (d) the sixth year and thereafter. However, in the Excel file submitted by the manufacturer, the monthly cost for the third year was referred to as the costs for the second year. Accordingly, the monthly cost to be used for the second year was JPY 1,036 for the tisagenlecleucel group and JPY 383 for the comparator group .

# 4. Results of cost-effectiveness analysis

### 4.1 Results of academic analysis

• The following analysis should be performed

- ✓ Cost-effectiveness analysis (calculate the ICER)
- □ Cost-minimization analysis (compare costs with each other)

### 4.1.1 Results of base case analysis by the academic group

### (a) Population aged <70 years

The base case analysis by the manufacturer and the academic group are shown in Tables 4-1-1-1 and 4-1-1-2, respectively. The academic group estimated the ICER to be JPY 8,084,464/QALY compared with salvage chemotherapy +/- allogeneic HSCT, which was less than JPY 7.5 million/QALY.

#### Table 4-1-1-1 Base case analysis by the analysis by manufacturer

|                  | Effectiveness<br>(QALY) | Incremental<br>effectiveness<br>(QALY) | Cost (JPY) | Incremental<br>cost (JPY) | ICER<br>(JPY/QALY) |
|------------------|-------------------------|----------------------------------------|------------|---------------------------|--------------------|
| Tisagenlecleucel | 5.70                    | 3.23                                   | 37,362,788 | 17,649,143                | 5,459,234          |
| Comparator       | 2.46                    |                                        | 19,713,646 |                           |                    |

|                  | Effectiveness<br>(QALY) | Incremental<br>effectiveness<br>(QALY) | Cost (JPY) | Incremental<br>cost (JPY) | ICER<br>(JPY/QALY) |
|------------------|-------------------------|----------------------------------------|------------|---------------------------|--------------------|
| Tisagenlecleucel | 4.16                    | 2.60                                   | 33,423,970 | 20,991,305                | 8,084,464          |
| Comparator       | 1.56                    |                                        | 12,432,665 |                           |                    |

#### Table 4-1-1-2 Base case analysis by the academic group

#### (b) Population aged $\geq$ 70 years

The base case analysis by the manufacturer and the academic group are shown in Tables 4-1-1-1 and 4-1-1-2, respectively. The academic group estimated the ICER to be JPY 12,538,653/QALY compared with salvage chemotherapy.

### Table 4-1-1-3 Base case analysis by the analysis by manufacturer

|                  | Effectiveness<br>(QALY) | Incremental<br>effectiveness<br>(QALY) | Cost (JPY) | Incremental<br>cost (JPY) | ICER<br>(JPY/QALY) |
|------------------|-------------------------|----------------------------------------|------------|---------------------------|--------------------|
| Tisagenlecleucel | 3.64                    | 2.47                                   | 21,450,349 | 12,934,205                | 5,231,584          |
| Comparator       | 1.16                    |                                        | 8,516,144  |                           |                    |

|                  | Effectiveness<br>(QALY) | Incremental<br>effectiveness<br>(QALY) | Cost (JPY) | Incremental<br>cost (JPY) | ICER<br>(JPY/QALY) |
|------------------|-------------------------|----------------------------------------|------------|---------------------------|--------------------|
| Tisagenlecleucel | 2.16                    | 1.24                                   | 24,112,176 | 15,548,531                | 12,538,653         |
| Comparator       | 0.92                    |                                        | 8,563,645  |                           |                    |

### Table 4-1-1-4 Base case analysis by the academic group

# 4.1.2 F Factors that are not reflected in the academic analysis but can influence the ICER

### [Factors increasing ICER]

- a) Duration of effect of tisagenlecleucel: This analysis assumes the effect of tisagenlecleucel continues for life time. However, the empirical data do not support the duration. The ICER is assumed to be worse than the current value if the effect of tisagenlecleucel does not continue for life time.
- b) Retreatment with tisagenlecleucel: Retreatment with tisagenlecleucel is not considered in the current analysis. The ICER is assumed to be worse if the retreatment by tisagenlecleucel is needed for some patients.

#### 4.2 Sensitivity analysis

#### (a) Population aged <70 years

The one-way sensitivity analysis was performed mainly for the parameters having a large impact on ICER in the manufacturer's submission. In addition, the academic group performed scenario analysis by changing the QOL of PFS, assuming the value 0.70 continued from the starting age (57 years). Next, the best-case and worst-case fitting to OS curve was applied. As a result, ICER was lower than JPY 7.5 million JPY/QALY when QOL score of PFS was increased by 10%. This parameter was associated with large uncertainty.

| Parameter                     | Range of p                                          | arameters                                           | Rationale for setting                                                                                                          | ICER range  | e (JPY/QALY) |
|-------------------------------|-----------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|
|                               | Lower limit                                         | Upper limit                                         |                                                                                                                                | Lower limit | Upper limit  |
| QOL scores in PFS             | <70 years:<br>0.747<br>≥70 years:<br>0.63<br>(-10%) | <70 years:<br>0.913<br>≥70 years:<br>0.77<br>(+10%) | The influence on ICER is large among<br>the parameters of the one-way<br>sensitivity analysis performed by the<br>manufacturer | 7,336,913   | 9,001,632    |
| QOL scores in PD/RL           | 0.351<br>(-10%)                                     | 0.429<br>(+10%)                                     | The life years of PD/RL varied in analysis by the academic group.                                                              | 8,052,054   | 8,117,135    |
| Salvage chemotherapy<br>price | 897,490<br>(-25%)                                   | 1,495,816<br>(+25%)                                 | The value of salvage chemotherapy<br>varied in analysis by the academic<br>group.                                              | 8,024,502   | 8,144,426    |
| Discount rate                 | 0%                                                  | 4%                                                  | The influence on ICER is large among<br>the parameters of the one-way<br>sensitivity analysis performed by the<br>manufacturer | 6,021,582   | 10,344,761   |

# Table 4-2-1 Results of one-way sensitivity analysis

# Table 4-2-2 Scenario analysis: 0.70 continues as QOL score of PFS fromthe starting age (57 years)

|                  | Effectiveness<br>(QALY) | Incremental<br>effectiveness<br>(QALY) | Cost (JPY) | Incremental<br>cost (JPY) | ICER<br>(JPY/QALY) |
|------------------|-------------------------|----------------------------------------|------------|---------------------------|--------------------|
| Tisagenlecleucel | 3.79                    | 2.36                                   | 33,423,970 | 20,991,305                | 8,880,499          |
| Comparator       | 1.42                    |                                        | 12,432,665 |                           |                    |

# Table 4-2-3 Scenario analysis: Exponential curve was fitted OS function in both groups (the prognosis of PD/RL was assumed to be the most pessimistic)

|                  | Effectiveness<br>(QALY) | Incremental<br>effectiveness<br>(QALY) | Cost (JPY) | Incremental<br>cost (JPY) | ICER<br>(JPY/QALY) |
|------------------|-------------------------|----------------------------------------|------------|---------------------------|--------------------|
| Tisagenlecleucel | 4.08                    | 2.76                                   | 32,140,264 | 23,598,799                | 8,555,809          |
| Comparator       | 1.32                    |                                        | 8,541,465  |                           |                    |

Table 4-2-4 Scenario analysis: Exponential curve was fitted to OS function only in the tisagenlecleucel group (when the prognosis of PD/RL was assumed to be the most pessimistic)

|                  | Effect | Incremental   | Cost (JPY) | Incremental | ICER       |
|------------------|--------|---------------|------------|-------------|------------|
|                  | (QALY) | effect (QALY) |            | cost (JPY)  | (JPY/QALY) |
| Tisagenlecleucel | 4.15   | 2.59          | 33,252,035 | 20,819,370  | 8,051,277  |
| Comparator       | 1.56   |               | 12,432,665 |             |            |

Table 4-2-5 Scenario analysis: Gompertz curve was fitted to in both groups (when the prognosis of PD/RL was assumed to be the most pessimistic)

|                  | Effectiveness<br>(QALY) | Incremental<br>effectiveness<br>(QALY) | Cost (JPY) | Incremental<br>cost (JPY) | ICER<br>(JPY/QALY) |
|------------------|-------------------------|----------------------------------------|------------|---------------------------|--------------------|
| Tisagenlecleucel | 4.42                    | 2.66                                   | 37,594,880 | 22,077,347                | 8,287,742          |
| Comparator       | 1.75                    |                                        | 15,517,533 |                           |                    |

# Table 4-2-6 Scenario analysis: Gompertz curve was fitted to OS function only in the tisagenlecleucel group (when the prognosis of PD/RL was assumed to be the most optimistic)

|                  | Effectiveness<br>(QALY) | Incremental<br>effectiveness<br>(QALY) | Cost (JPY) | Incremental<br>cost (JPY) | ICER<br>(JPY/QALY) |
|------------------|-------------------------|----------------------------------------|------------|---------------------------|--------------------|
| Tisagenlecleucel | 4.36                    | 2.80                                   | 36,713,489 | 24,280,824                | 8,670,069          |
| Comparator       | 1.56                    |                                        | 12,432,665 |                           |                    |

#### (b) Population aged $\geq$ 70 years

.

The one-way sensitivity analysis was performed mainly for the parameters having a large impact on ICER in the manufacturer's submission. In addition, the best-case and worst-case fitting to OS curve was applied. As a result, there was no parameters which ICER was decreased to less than JPY 11.25 million.
| Table 4-2-7 | Results | of | one-way | sensitivity | / analy | ysis |
|-------------|---------|----|---------|-------------|---------|------|
|             |         |    |         |             |         |      |

| Parameter            | Range of parameters |                                        | Rationale for setting              | ICER range (JPY/QALY) |             |
|----------------------|---------------------|----------------------------------------|------------------------------------|-----------------------|-------------|
|                      | Lower limit         | Upper limit                            |                                    | Lower limit           | Upper limit |
|                      |                     |                                        | The influence on ICER is large     |                       |             |
| OOL scores in PES    | 0.63                | 0.77                                   | among the parameters of the one-   | 11 336 812            | 14,025,531  |
|                      | (-10%)              | (+10%)                                 | way sensitivity analysis performed | 11,550,012            |             |
|                      |                     |                                        | by the manufacturer                |                       |             |
|                      | 0.351               | 0.429                                  | The life years of PD/RL varied in  | 12 456 644            | 12 621 740  |
|                      | (-10%)              | (+10%) analysis by the academic group. |                                    | 12,430,044            | 12,021,749  |
| Salvaga chamatharany | 205 200 1 402 191   |                                        | The value of salvage chemotherapy  |                       |             |
|                      | 695,509             | (-25%) (+25%)                          | varied in analysis by the academic | 12,450,980            | 12,626,326  |
| price                | (-25%)              |                                        | group.                             |                       |             |
|                      |                     |                                        | The influence on ICER is large     |                       |             |
| Discount rate        | 0% 4%               | among the parameters of the one-       | 10 221 472                         | 14 959 202            |             |
|                      |                     | 4 %                                    | way sensitivity analysis performed | 10,321,473            | 14,030,393  |
|                      |                     | by the manufacturer                    |                                    |                       |             |

Table 4-2-8 Scenario analysis: Exponential curve was fitted OS function in both groups (the prognosis of PD/RL was assumed to be the most pessimistic)

|                  | Effectiveness<br>(QALY) | Incremental<br>effectiveness<br>(QALY) | Cost (JPY) | Incremental<br>cost (JPY) | ICER<br>(JPY/QALY) |
|------------------|-------------------------|----------------------------------------|------------|---------------------------|--------------------|
| Tisagenlecleucel | 2.02                    | 1.36                                   | 21,875,005 | 17,561,781                | 12,866,493         |
| Comparator       | 0.66                    |                                        | 4,313,224  |                           |                    |

# Table 4-2-9 Scenario analysis: Exponential curve was fitted to OS function only in the tisagenlecleucel group (when the prognosis of PD/RL was assumed to be the most pessimistic)

|                  | Effect | Incremental   | $C_{a} = t (1D)()$ | Incremental | ICER       |
|------------------|--------|---------------|--------------------|-------------|------------|
|                  | (QALY) | effect (QALY) | COSL (JPY)         | cost (JPY)  | (JPY/QALY) |
| Tisagenlecleucel | 2.16   | 1.23          | 24,000,216         | 15,436,571  | 12,518,404 |
| Comparator       | 0.92   |               | 8,563,645          |             |            |

# Table 4-2-10 Scenario analysis: Gompertz curve was fitted to in both groups (when the prognosis of PD/RL was assumed to be the most pessimistic)

|                  | Effectiveness<br>(QALY) | Incremental<br>effectiveness<br>(QALY) | Cost (JPY) | Incremental<br>cost (JPY) | ICER<br>(JPY/QALY) |
|------------------|-------------------------|----------------------------------------|------------|---------------------------|--------------------|
| Tisagenlecleucel | 2.28                    | 1.30                                   | 26,079,232 | 16,528,684                | 12,706,111         |
| Comparator       | 0.98                    |                                        | 9,550,548  |                           |                    |

## Table 4-2-11 Scenario analysis: Gompertz curve was fitted to OS function only in the tisagenlecleucel group (when the prognosis of PD/RL was assumed to be the most optimistic)

|                  | Effectiveness<br>(QALY) | Incremental<br>effectiveness<br>(QALY) | Cost (JPY) | Incremental<br>cost (JPY) | ICER<br>(JPY/QALY) |
|------------------|-------------------------|----------------------------------------|------------|---------------------------|--------------------|
| Tisagenlecleucel | 2.25                    | 1.33                                   | 25,585,780 | 17,022,135                | 12,784,609         |
| Comparator       | 0.92                    |                                        | 8,563,645  |                           |                    |

## 4.3 Interpretation of analytical results

### (a) Population aged <70 years

|                 | Among the patients with relapsed or refractory CD19-            |  |  |  |
|-----------------|-----------------------------------------------------------------|--|--|--|
| Population      | positive diffuse large B-cell lymphoma, the population aged     |  |  |  |
|                 | <70 years                                                       |  |  |  |
| Comparator      | Salvage chemotherapy +/- allogeneic HSCT                        |  |  |  |
| Type of the     | Regular product  Product requiring special                      |  |  |  |
| threshold       | consideration                                                   |  |  |  |
|                 | Cost reduction or dominant                                      |  |  |  |
|                 | □ JPY 5 million or less (JPY 7.5 million or less)               |  |  |  |
|                 | ✓ More than JPY 5 million (more than JPY 7.5 million) and       |  |  |  |
| Intonyala whore | not more than JPY 7.5 million (not more than JPY 11.25          |  |  |  |
| Intervals where | million)                                                        |  |  |  |
| to bolong       | □ More than JPY 7.5 million (more than JPY 11.25 million)       |  |  |  |
| to belong       | and not more than JPY 10 million (not more than JPY 15          |  |  |  |
|                 | million)                                                        |  |  |  |
|                 | □ More than JPY 10 million (more than JPY 15 million)           |  |  |  |
|                 | Equivalent (or inferior) in effectiveness and expensive         |  |  |  |
| Reason for such | The results of base csae analysis showed the ICER of JPY        |  |  |  |
|                 | 8,084,464 /QALY. Since the results of the one-way               |  |  |  |
|                 | sensitivity analysis showed similar tendency, it is most likely |  |  |  |
| Judginent       | that the ICER belongs to the interval of "more than JPY 7.5     |  |  |  |
|                 | million and not more than JPY 11.25 million".                   |  |  |  |

### (b) Population aged $\geq$ 70 years

| Population to be    | Among the patients with relapsed or refractory CD19-<br>positive diffuse large B-cell lymphoma, the population aged |  |  |  |  |
|---------------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| analyzeu            | ≥70 years                                                                                                           |  |  |  |  |
| Comparator          | Salvage chemotherapy                                                                                                |  |  |  |  |
| Reference value     | Regular product  Product requiring special                                                                          |  |  |  |  |
| for ICER            | consideration                                                                                                       |  |  |  |  |
|                     | Cost reduction or dominant                                                                                          |  |  |  |  |
|                     | □ JPY 5 million or less (JPY 7.5 million or less)                                                                   |  |  |  |  |
|                     | More than JPY 5 million (more than JPY 7.5 million) and                                                             |  |  |  |  |
| Intonyala whore     | not more than JPY 7.5 million (not more than JPY 11.25                                                              |  |  |  |  |
| ICEP is most likely | million)                                                                                                            |  |  |  |  |
| to bolong           | ✓ More than JPY 7.5 million (more than JPY 11.25 million)                                                           |  |  |  |  |
| to belong           | and not more than JPY 10 million (not more than JPY 15                                                              |  |  |  |  |
|                     | million)                                                                                                            |  |  |  |  |
|                     | □ More than JPY 10 million (more than JPY 15 million)                                                               |  |  |  |  |
|                     | Equivalent (or inferior) in effectiveness and expensive                                                             |  |  |  |  |
| Reason for such     | The results of base case analysis showed the ICER of                                                                |  |  |  |  |
|                     | 12,538,653 JPY/QALY. Since the results of the one-way                                                               |  |  |  |  |
|                     | sensitivity analysis showed similar tendency, it is most likely                                                     |  |  |  |  |
| Judginent           | that the ICER belongs to the interval of "more than 11.25                                                           |  |  |  |  |
|                     | million JPY and not more than 15 million JPY".                                                                      |  |  |  |  |

#### 4.4 Price adjustment rate

#### 4.4.1 Proportion of patients with ALL and DLBCL

For the proportions of patients with ALL and DLBCL, the manufacturer has estimated patients (2006%) with ALL and 2006 patients (2006%) with DLBCL based on a peak predicted exposure of 216 patients. The manufacturer explained that estimates were made based on 2006 patients.

rather than actual clinical data not enough time since the recent launch of tisagenlecleucel. This estimate by the manufacturer is acceptable to the academic group. Therefore 600 % is used as the proportion of patients with ALL.

#### 4.4.2 Proportion of patients with DLBCL

The populations include two patient groups with <70 years of age and  $\geq$  70 years of age. It is necessary to calculate the weight for each price adjustment rate. The manufacturer has submitted survey data from

for the proportion of age groups (every 5 years of age) considering administration of CAR-T therapy. This estimation shows that the proportion of patients decreased as age increased, and the proportion of patients aged <70 years versus  $\geq$ 70 years is 6% and 6%, respectively. This estimate by the manufacturer is acceptable to the academic group. Therefore it is appropriate to use 6% and 6% as the proportion of patients with DLBCL in each population.

#### 5. References

- Shiroiwa T, Fukuda T, Ikeda S, Igarashi A, Noto S, Saito S, Shimozuma K.
  Japanese population norms for preference-based measures: EQ-5D-3L, EQ-5D-5L, and SF-6D. Qual Life Res. 2016 Mar;25(3):707-19.
- [2] Lin JK, Muffly LS, Spinner MA, Barnes JI, Owens DK, Goldhaber-Fiebert JD. Cost Effectiveness of Chimeric Antigen Receptor T-Cell Therapy in Multiply Relapsed or Refractory Adult Large B-Cell Lymphoma. J Clin Oncol. 2019 Aug 20;37(24):2105-19.
- [3] Ministry of Health, Labour and Welfare, "List of Products Included in the NHI Price List and Information on Generic Drugs (applied on August 26, 2020)"[Online] Available:

https://www.mhlw.go.jp/topics/2020/04/tp20200401-01.html. [Accessed: 2020 Sep 30].